您现在的位置是: 首页 > 教育比较 教育比较
2014数学高考试卷答案,2014高考数学试题
tamoadmin 2024-05-22 人已围观
简介参考答案一、选择题:每小题5分,满分60分。1.A2.D3.A4.B5.A6.B7.C8.A9.D10.C11.B12.C二、填空题:每小题4分,满分16分。13.14.915.28816.1+2三、解答题:满分74分17.(本小题13分)解:(Ⅰ)设A表示甲命中目标,B表示乙命中目标,则A、B相互独立,且P(A)=,从而甲命中但乙未命中目标的概率为(Ⅱ)设A1表示甲在两次射击中恰好命中k次,B1
参考答案
一、选择题:每小题5分,满分60分。
1.A
2.D
3.A
4.B
5.A
6.B
7.C
8.A
9.D
10.C
11.B
12.C
二、填空题:每小题4分,满分16分。
13.
14.9
15.288
16.1+2
三、解答题:满分74分
17.(本小题13分)
解:(Ⅰ)设A表示甲命中目标,B表示乙命中目标,则A、B相互独立,且P(A)=,从而甲命中但乙未命中目标的概率为
(Ⅱ)设A1表示甲在两次射击中恰好命中k次,B1表示乙有两次射击中恰好命中1次。
依题意有
由独立性知两人命中次数相等的概率为
18.(本小题13分)
解:(Ⅰ)由
故f(x)的定义域为
(Ⅱ)由已知条件得
从而
=
=
=
19.(本小题12分)
解法一:(Ⅰ)由直三棱柱的定义知B1C1⊥B1D,又因为∠ABC=90°,因此B1C1⊥A1B1,从而
B1C1⊥平面A1B1D,得B1C1⊥B1E。又B1E⊥A1D,
故B1E是异面直线B1C1与A1D的公垂线
由知
在Rt△A1B1D中,A2D=
又因
故B1E=
(Ⅱ)由(Ⅰ)知B1C1⊥平面A1B1D,又BC‖B1C1,故BC⊥平面ABDE,即BC为四棱锥C-ABDE的高。从而所求四棱锥的体积V为
V=VC-ABDE=
其中S为四边形ABDE的面积。如答(19)图1,过E作EF⊥BD,垂足为F。
答(19)图1
在Rt△B1ED中,ED=
又因S△B1ED=
故EF=
因△A1AE的边A1A上的高故
S△A1AE=
又因为S△A1BD=从而
S=S△A1AE-S△A1AE-S△A1B1D=2-
所以
解法二:(Ⅱ)如答(19)图2,以B点为坐标原点O建立空间直角坐标系O-xyz,则
答(19)图2
A(0,1,0),A1(0,1,2),B(0,0,0)
B1(0,0,2),C1(,0,2),D(0,0,)
因此
设E(,y0,z0),则,
因此
又由题设B1E⊥A1D,故B1E是异面直线B1C1与A1D的公垂线。
下面求点E的坐标。
因B1E⊥A1D,即
又
联立(1)、(2),解得,,即,。
所以.
(Ⅱ)由BC⊥AB,BC⊥DB,故BC⊥面ABDE.即BC为四棱锥C-ABDE的高.
下面求四边形ABDE的面积。
因为SABCD=SABE+ SADE,
而SABE=
SBDE=
故SABCD=
所以
20.(本小题12分)
解:设长方体的宽为x(m),则长为2x
(m),高为
.
故长方体的体积为
从而
令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.
当0<x<1时,V′(x)>0;当1<x<时,V′(x)<0,
故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。
从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.
答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。
21.(本小题12分)
(Ⅰ)解:设抛物线的标准方程为,则,从而
因此焦点的坐标为(2,0).
又准线方程的一般式为。
从而所求准线l的方程为。
答(21)图
(Ⅱ)解法一:如图(21)图作AC⊥l,BD⊥l,垂足为C、D,则由抛物线的定义知
|FA|=|FC|,|FB|=|BD|
记A、B的横坐标分别为xxxz,则
|FA|=|AC|=解得,
类似地有,解得。
记直线m与AB的交点为E,则
所以。
故。
解法二:设
答案为[1/2,2+√2]
解:依题意可知集合A表示一系列圆内点的集合,集合B表示出一系列直线的集合,要使两集合不为空集,需直线与圆有交点,由可得m≤0或m≥1/2。
当m≤0时,有[(2-2m)/√2]>-m且[(2-2m-1)/√2]>_m;
则有[√2_√2m]>_m,√2/2_√2m>_m,
又由m≤0,则2>2m+1,可得A∩B=?,
当m≥1/2时,有|2-2m/√2|≤m或|2-2m-1/√2|≤m,
解可得:2-√2≤m≤2+√2,1-√2/2≤m≤1+√2/2,
又由m≥12,则m的范围是[1/2,2+√2];
综合可得m的范围是[1/2,2+√2];
故答案为[1/2,2+√2]?
上一篇:高考连片扶贫,连片扶贫招生政策