您现在的位置是: 首页 > 教育比较 教育比较

高考数学函数题_高考数学函数公式

tamoadmin 2024-05-28 人已围观

简介1.高三文科数学公式总结2.我想知道,高考中常用的数学公式.有高手可以告诉我几个吗?3.文科数学高考必背公式总结4.高中数学三角函数知识点总结5.高考数学常用公式6.高三数学三角函数专题知识点7.高考必考的数学公式可以在做题的过程中进行归纳总结,形成答题的套路和模板。以下是必背公式:公式一:设α为任意角,终边相同的角的同一三角函数的值相等、sin(2kπ+α)=sinα(k∈Z)、cos(2kπ+

1.高三文科数学公式总结

2.我想知道,高考中常用的数学公式.有高手可以告诉我几个吗?

3.文科数学高考必背公式总结

4.高中数学三角函数知识点总结

5.高考数学常用公式

6.高三数学三角函数专题知识点

7.高考必考的数学公式

高考数学函数题_高考数学函数公式

可以在做题的过程中进行归纳总结,形成答题的套路和模板。

以下是必背公式:

公式一:设α为任意角,终边相同的角的同一三角函数的值相等、sin(2kπ+α)=sinα(k∈Z)、cos(2kπ+α)=cosα(k∈Z)、tan(2kπ+α)=tanα(k∈Z)、cot(2kπ+α)=cotα(k∈Z)。

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinα、cos(π+α)=-cosα、tan(π+α)=tanα、cot(π+α)=cotα。

公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα、cos(-α)=cosα、tan(-α)=-tanα、cot(-α)=-cotα。

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα、cos(π-α)=-cosα、tan(π-α)=-tanα、cot(π-α)=-cotα。

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα、cos(2π-α)=cosα、tan(2π-α)=-tanα、cot(2π-α)=-cotα。

公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα、cos(π/2+α)=-sinα、tan(π/2+α)=-cotα、cot(π/2+α)=-tanα、sin(π/2-α)=cosα、cos(π/2-α)=sinα、tan(π/2-α)=cotα、cot(π/2-α)=tanα、sin(3π/2+α)=-cosα、cos(3π/2+α)=sinα、tan(3π/2+α)=-cotα、cot(3π/2+α)=-tanα、sin(3π/2-α)=-cosα、cos(3π/2-α)=-sinα、tan(3π/2-α)=cotα、cot(3π/2-α)=tanα。

高三文科数学公式总结

高考数学是高中数学的综合体现,包含了大量的知识点和公式。在考试中熟练掌握基本公式可以有效地提升答题效率和准确度。下面介绍几个高考数学中常用的基本公式。

1. 三角函数基本公式:sin?x + cos?x = 1;tan x = sin x / cos x;cot x = cos x / sin x;sec x = 1 / cos x;csc x = 1 / sin x。

2. 勾股定理:直角三角形的斜边平方等于两腰平方和。即a? + b? = c?。

3. 平面几何公式:平面内直线的解析式、两点间距离公式、平面向量公式、平面内两直线夹角公式、圆的解析式(标准式和一般式)、圆的一般方程组。

4. 序列与数列公式:通项公式、前n项和公式、等差数列通项公式、等比数列通项公式、等比数列前n项和公式。

5. 导数公式:求导法则(如常数法则、加法法则、乘法法则、复合函数求导法、幂函数求导法、指数函数求导法等)。

6. 矩阵公式:矩阵基本概念、矩阵的运算(如加、减、数乘、点乘等)、矩阵的转置、矩阵的行列式、矩阵的逆等。

以上是几个高考数学中常用的基本公式,需要广大考生在备考过程中认真掌握,并能够熟练运用。除了基本公式外,还需要注意各种公式之间的关联和应用,以及公式的具体适用范围和条件。只有在掌握了这些知识之后才能更好地应对考试。

我想知道,高考中常用的数学公式.有高手可以告诉我几个吗?

高三文科生在复习数学科目时,首先需要掌握数学公式。为了帮助高考考生掌握数学公式,下面我为高三文科生整理数学公式,希望对大家有所帮助!

高三文科数学公式

 一、对数函数

 log.a(MN)=logaM+logN

 loga(M/N)=logaM-logaN

 logaM^n=nlogaM(n=R)

 logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)

 二、简单几何体的面积与体积

 S直棱柱侧=c*h(底面周长乘以高)

 S正棱椎侧=1/2*c*h?(底面的周长和斜高的一半)

 设正棱台上、下底面的周长分别为c?,c,斜高为h?,S=1/2*(c+c?)*h

 S圆柱侧=c*l

 S圆台侧=1/2*(c+c?)*l=兀*(r+r?)*l

 S圆锥侧=1/2*c*l=兀*r*l

 S球=4*兀*R^3

 V柱体=S*h

 V锥体=(1/3)*S*h

 V球=(4/3)*兀*R^3

 三、两直线的位置关系及距离公式

 (1)数轴上两点间的距离公式|AB|=|x2-x1|

 (2) 平面上两点A(x1,y1),(x2,y2)间的距离公式

 |AB|=sqr[(x2-x1)^2+(y2-y1)^2]

 (3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式 d=|Ax0+By0+C|/sqr

 (A^2+B^2)

 (4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-

 C2|/sqr(A^2+B^2)

 同角三角函数的基本关系及诱导公式

 sin(2*k*兀+a)=sin(a)

 cos(2*k*兀+a)=cosa

 tan(2*兀+a)=tana

 sin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tana

 sin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tana

 sin(兀+a)=-sina

 sin(兀-a)=sina

 cos(兀+a)=-cosa

 cos(兀-a)=-cosa

 tan(兀+a)=tana

 四、二倍角公式及其变形使用

 1、二倍角公式

 sin2a=2*sina*cosa

 cos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2

 tan2a=(2*tana)/[1-(tana)^2]

 2、二倍角公式的变形

 (cosa)^2=(1+cos2a)/2

 (sina)^2=(1-cos2a)/2

 tan(a/2)=sina/(1+cosa)=(1-cosa)/sina

 五、正弦定理和余弦定理

 正弦定理:

 a/sinA=b/sinB=c/sinC

 余弦定理:

 a^2=b^2+c^2-2bccosA

 b^2=a^2+c^2-2accosB

 c^2=a^2+b^2-2abcosC

 cosA=(b^2+c^2-a^2)/2bc

 cosB=(a^2+c^2-b^2)/2ac

 cosC=(a^2+b^2-c^2)/2ab

 tan(兀-a)=-tana

 sin(兀/2+a)=cosa

 sin(兀/2-a)=cosa

 cos(兀/2+a)=-sina

 cos(兀/2-a)=sina

 tan(兀/2+a)=-cota

 tan(兀/2-a)=cota

 (sina)^2+(cosa)^2=1

 sina/cosa=tana

 两角和与差的余弦公式

 cos(a-b)=cosa*cosb+sina*sinb

 cos(a-b)=cosa*cosb-sina*sinb

 两角和与差的正弦公式

 sin(a+b)=sina*cosb+cosa*sinb

 sin(a-b)=sina*cosb-cosa*sinb

 两角和与差的正切公式

 tan(a+b)=(tana+tanb)/(1-tana*tanb)

 tan(a-b)=(tana-tanb)/(1+tana*tanb)

高中数学知识点速记口诀

 1.《集合与函数》

 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

 指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

 2.《三角函数》

 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

 3.《不等式》

 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

 高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

 证不等式的 方法 ,实数性质威力大。求差与0比大小,作商和1争高下。

 直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

 还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

 4.《数列》

 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。

 数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,

 取长补短高斯法,裂项求和公式算。归纳思想非常好,编个程序好思考:

 一算二看三联想,猜测证明不可少。还有数学归纳法,证明步骤程序化:

 首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

 5.《复数》

 虚数单位i一出,数集扩大到复数。一个复数一对数,横纵坐标实虚部。

 对应复平面上点,原点与它连成箭。箭杆与X轴正向,所成便是辐角度。

 箭杆的长即是模,常将数形来结合。代数几何三角式,相互转化试一试。

 代数运算的实质,有i多项式运算。i的正整数次慕,四个数值周期现。

 一些重要的结论,熟记巧用得结果。虚实互化本领大,复数相等来转化。

 利用方程思想解,注意整体代换术。几何运算图上看,加法平行四边形,

 减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

 三角形式的运算,须将辐角和模辨。利用棣莫弗公式,乘方开方极方便。

 辐角运算很奇特,和差是由积商得。四条性质离不得,相等和模与共轭,

 两个不会为实数,比较大小要不得。复数实数很密切,须注意本质区别。

 6.《排列、组合、二项式定理》

 加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

 两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

 排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

 不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

 关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

 7.《立体几何》

 点线面三位一体,柱锥 台球 为代表。距离都从点出发,角度皆为线线成。

 垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。

 方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。

 立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。

 异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。

 8.《平面解析几何》

 有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

 笛卡尔的观点对,点和有序实数对,两者一一来对应,开创几何新途径。

 两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

 三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

 四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

 解析几何是几何,得意忘形学不活。图形直观数入微,数学本是数形学。

高三文科 数学 学习方法

 一:加深理解

 对数学课本里的概念要重新的认识,进一步加深对公式,定理的理解和掌握,认真看书,多练习,全面掌握,结合所有资料,提高解题的能力和更深知识的理解。

 二:认真做笔记

 上课时,一定要认真听,做笔记。听课不只是要听而已,还在积极的思考老师提出的问题,想想如何解决这个问题,应该要用什么方法,什么公式等等。老师上课时讲的,都会有一些的解题方法和思路,还有平时都会出错的问题,如何去解决,判断。所以上课做好笔记是必须的。

 三:反复练习

文科数学高考必背公式总结

我认为比较重要的就有分式函数:f(x)=ax+b/x(a,b属于R)的单调性.它的单调性要根据图像来记忆,它的图像恕我在这儿画不出来,你可以请教你的数学老师.

公式主要就是课本上的那些

另外补充的还有弦长公式:d=根号下(1+k平方)*丨x1-x2丨=根号下(1+k^-2)*丨y1-y2丨

三角函数中asinx+bcosx=根号下(a平方+b平方)倍的sin(x+arctan(b/a))用得最多,至于什么和差化积,积化合差等考试不会考的.

函数求值域的方法要熟练.立体几何中向量的运用能够降低难度.数列部分有一些常见题型和一些小结论你要注意掌握,我在这里就不一一罗列了.导数公式一定要记牢.重点的就是这些的.

其它的结论你的数学老师在课堂上会讲的.

高中数学三角函数知识点总结

高中数学对大部分考生来说算是一个比较有难度的学科,尤其是作为一名文科生,数学这种理科科目想必一定难倒了一大半吧!其实,高中数学里面有很多公式,掌握了这些公式,就没有那么难了。下文我给大家整理了《文科数学高考必背公式总结》。

文科数学高考必背公式

一、三角形公式

正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径

余弦定理:a2=b2+c2-2bc*cosA

sin(A+B)=sinC

sin(A+B)=sinAcosB+sinBcosA

sin(A-B)=sinAcosB+sinBcosA

sin2A=2sinAcosA

cos2A=2(cosA)2-1=(cosA)2-(sinA)2=1-2(sinA)2

tan2A=2tanA/[1-(tanA)2]

(sinA)2+(cosA)2=1

二、诱导公式

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinα

三、函数

1、函数的单调性

(1)设x1、x2[a,b],x1x2那么

f(x1)f(x2)0f(x)在[a,b]上是增函数;

f(x1)f(x2)0f(x)在[a,b]上是减函数.

(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.

2、函数的奇偶性

对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y轴对称。

高考文科数学必背公式口诀

一、《集合与函数》

内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》

三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

三、《不等式》

解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。

高考数学常用公式

 在高中数学中三角函数一直是非常难的课程,它有哪些知识点呢。以下是由我为大家整理的“高中数学三角函数知识点总结”,仅供参考,欢迎大家阅读。

高中数学三角函数知识点总结

 一、锐角三角函数公式

 sin=的对边/斜边

 cos=的邻边/斜边

 tan=的对边/的邻边

 cot=的邻边/的对边

 二、倍角公式

 Sin2A=2SinA?CosA

 Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1

 tan2A=(2tanA)/(1-tanA2)(注:SinA2是sinA的平方sin2(A))

三、三倍角公式

 sin3=4sinsin(/3+)sin(/3-)

 cos3=4coscos(/3+)cos(/3-)

 tan3a=tanatan(/3+a)tan(/3-a)

 三倍角公式推导

 sin3a

 =sin(2a+a)

 =sin2acosa+cos2asina

 辅助角公式

 Asin+Bcos=(A2+B2)(1/2)sin(+t),其中

 sint=B/(A2+B2)(1/2)

 cost=A/(A2+B2)(1/2)

 tant=B/A

 Asin+Bcos=(A2+B2)(1/2)cos(-t),tant=A/B

  四、降幂公式

 sin2()=(1-cos(2))/2=versin(2)/2

 cos2()=(1+cos(2))/2=covers(2)/2

 tan2()=(1-cos(2))/(1+cos(2))

 推导公式

 tan+cot=2/sin2

 tan-cot=-2cot2

 1+cos2=2cos2

 1-cos2=2sin2

 1+sin=(sin/2+cos/2)2

 =2sina(1-sina)+(1-2sina)sina

 =3sina-4sina

 cos3a

 =cos(2a+a)

 =cos2acosa-sin2asina

 =(2cosa-1)cosa-2(1-sina)cosa

 =4cosa-3cosa

 sin3a=3sina-4sina

 =4sina(3/4-sina)

 =4sina[(3/2)-sina]

 =4sina(sin60-sina)

 =4sina(sin60+sina)(sin60-sina)

 =4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2]

 =4sinasin(60+a)sin(60-a)

 cos3a=4cosa-3cosa

 =4cosa(cosa-3/4)

 =4cosa[cosa-(3/2)]

 =4cosa(cosa-cos30)

 =4cosa(cosa+cos30)(cosa-cos30)

 =4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-

 30)/2]}

 =-4cosasin(a+30)sin(a-30)

 =-4cosasin[90-(60-a)]sin[-90+(60+a)]

 =-4cosacos(60-a)[-cos(60+a)]

 =4cosacos(60-a)cos(60+a)

 上述两式相比可得

 tan3a=tanatan(60-a)tan(60+a)

五、半角公式

 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

 cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

 sin2(a/2)=(1-cos(a))/2

 cos2(a/2)=(1+cos(a))/2

 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

六、三角和

 sin(++)=sincoscos+cossincos+coscossin

 -sinsinsin

 cos(++)=coscoscos-cossinsin-sincossin-sinsincos

 tan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)

 七、两角和差

 cos(+)=coscos-sinsin

 cos(-)=coscos+sinsin

 sin()=sincoscossin

 tan(+)=(tan+tan)/(1-tantan)

 tan(-)=(tan-tan)/(1+tantan)

 八、和差化积

 sin+sin=2sin[(+)/2]cos[(-)/2]

 sin-sin=2cos[(+)/2]sin[(-)/2]

 cos+cos=2cos[(+)/2]cos[(-)/2]

 cos-cos=-2sin[(+)/2]sin[(-)/2]

 tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

 tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

九、积化和差

 sinsin=[cos(-)-cos(+)]/2

 coscos=[cos(+)+cos(-)]/2

 sincos=[sin(+)+sin(-)]/2

 cossin=[sin(+)-sin(-)]/2

十、诱导公式

 sin(-)=-sin

 cos(-)=cos

 tan(—a)=-tan

 sin(/2-)=cos

 cos(/2-)=sin

 sin(/2+)=cos

 cos(/2+)=-sin

 sin(-)=sin

 cos(-)=-cos

 sin(+)=-sin

 cos(+)=-cos

 tanA=sinA/cosA

 tan(/2+)=-cot

 tan(/2-)=cot

 tan(-)=-tan

 tan(+)=tan

 诱导公式记背诀窍:奇变偶不变,符号看象限

十一、万能公式

 sin=2tan(/2)/[1+tan(/2)]

 cos=[1-tan(/2)]/1+tan(/2)]

 tan=2tan(/2)/[1-tan(/2)]

十二、其它公式

 (1)(sin)2+(cos)2=1

 (2)1+(tan)2=(sec)2

 (3)1+(cot)^2=(csc)^2

 (4)对于任意非直角三角形,总有

 tanA+tanB+tanC=tanAtanBtanC

 证:

 A+B=-C

 tan(A+B)=tan(-C)

 (tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)

 整理可得

 tanA+tanB+tanC=tanAtanBtanC

 得证

 同样可以得证,当x+y+z=n(nZ)时,该关系式也成立

 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

 (5)cotAcotB+cotAcotC+cotBcotC=1

 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

 (7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC

 (8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC

 (9)sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)++sin[+2*(n-1)/n]=0

 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)++cos[+2*(n-1)/n]=0以及

 sin2()+sin2(-2/3)+sin2(+2/3)=3/2

 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

 拓展阅读:学好函数的方法

 一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则

 而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。

 很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。

二、牢记几种基本初等函数及其相关性质、图象、变换

 中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。

 还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。

三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题

 翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。

高三数学三角函数专题知识点

高考数学中常用的公式有很多,以下是一些重要的公式:

1.三角函数公式:sin?θ+cos?θ=1;tanθ=sinθ/cosθ;cotθ=cosθ/sinθ。

2.平面几何公式:长方形面积公式:S=a×b;三角形面积公式:S=1/2×底边长×高;圆的面积公式:S=πr?;球的表面积公式:S=4πr?;球的体积公式:V=4/3πr?

3.解方程公式:二次方程求根公式:x=[-b±√(b?-4ac)]/2a;一元一次方程求根公式:x=-b/a。

4.对数公式:对数运算与指数运算互为反运算:logaam=m(m是任意实数且a≠0,a≠1);换底公式:logab=logcb/logca(a,b,c是三个正实数,且a≠1,b≠1)以上公式仅是高考数学中的部分内容,还有很多公式需要根据具体情况灵活应用。

学好数学需要付出大量的时间和精力,以下是一些建议:

1.培养逻辑思维能力:数学是一门需要运用逻辑推理的学科,要想学好数学,必须培养逻辑思维能力,锻炼自己的思考能力和解决问题的能力。

2.勤于练习:数学是一门需要大量练习的学科,只有通过反复练习才能掌握数学知识和技能。可以多做一些数学题目,不仅可以提高自己的计算速度和准确性,还可以让自己更深入地理解数学概念和方法。

3.系统化学习:数学知识是一个系统,各个部分相互联系,需要全面掌握。在学习数学时,应该按照顺序、渐进地学习,逐步掌握数学的基础知识和核心概念,再挑战更高难度的题目。

4.寻找合适的学习方法:每个人不同,需要寻找最适合自己的学习方法。可以采用阅读教材、听老师讲解、看视频教程、参加课外活动等多种方式来学习数学。

5.善于总结归纳:数学知识复杂而繁多,需要善于总结归纳。可以将自己掌握的数学知识和方法进行整理和分类,便于以后查阅和复习。总之,要学好数学,需要付出不断努力和坚持不懈的精神。

高考必考的数学公式

已经进入高二上学期的同学们,在我们顺利度过高中的适应期,积极参与学校社团活动,逐步形成了自我学习模式,初步拟定人生规划后,要将自我的精力集中到学习上,应将自己的学业做到一个高度的时候了。我高二频道为你整理了《 高二数学 三角函数知识点》希望可以帮到你!

高三数学 三角函数专题知识点

锐角三角函数定义

锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。

正弦(sin)等于对边比斜边;sinA=a/c

余弦(cos)等于邻边比斜边;cosA=b/c

正切(tan)等于对边比邻边;tanA=a/b

余切(cot)等于邻边比对边;cotA=b/a

正割(sec)等于斜边比邻边;secA=c/b

余割(csc)等于斜边比对边。cscA=c/a

互余角的三角函数间的关系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

锐角三角函数公式

两角和与差的三角函数:

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-cosAsinB?

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA)

cot(A-B)=(cotAcotB+1)/(cotB-cotA)

三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

推导公式:

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

其他:

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

高三数学三角函数专题知识点

函数名正弦余弦正切余切正割余割

在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

正弦函数sinθ=y/r

余弦函数cosθ=x/r

正切函数tanθ=y/x

余切函数cotθ=x/y

正割函数secθ=r/x

余割函数cscθ=r/y

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

三角函数万能公式

万能公式

(1)(sinα)^2+(cosα)^2=1

(2)1+(tanα)^2=(secα)^2

(3)1+(cotα)^2=(cscα)^2

证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:

A+B=π-C

tan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

得证

同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

万能公式为:

设tan(A/2)=t

sinA=2t/(1+t^2)(A≠2kπ+π,k∈Z)

tanA=2t/(1-t^2)(A≠2kπ+π,k∈Z)

cosA=(1-t^2)/(1+t^2)(A≠2kπ+π,且A≠kπ+(π/2)k∈Z)

就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.

高三数学三角函数专题知识点

三角函数关系

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscαcα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α)

高三数学三角函数专题知识点相关 文章 :

★ 高考数学三角函数重点考点归纳

★ 高考数学三角函数知识点总结

★ 高三数学解三角函数方法总结

★ 高三文科数学三角函数知识点归纳

★ 2017高考数学三角函数知识点总结

★ 高中数学必修一三角函数知识点总结

★ 高中必修4数学三角函数知识点归纳

★ 高三数学专题复习知识点

★ 高中三角函数知识点归纳

★ 高考数学常用三角函数公式总结

高考必考的数学公式如下:

1、三角函数公式: sin?θ + cos?θ = 1 tanθ = sinθ/cosθ。

2、角度制和弧度制之间的转换: 角度制 = 弧度制 × 180/π 弧度制 = 角度制 × π/180。

3、圆与圆周的关系: 圆的面积:S=πr? 圆的周长:C=2πr 弧长公式:L = θ/2π × 2πr = θr (其中θ是圆心角的弧度值)。

4、三角形面积公式: 面积公式:S = 1/2 × 底 × 高 海龙公式:S= √[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。

5、平面几何公式: 两点间距离公式:d = √[(x2-x1)?+(y2-y1)?] 中点公式:(X,Y)=((x1+x2)/2,(y1+y2)/2) 垂直平分线公式:Ax + By + C = 0 (其中A、B、C由中点(X,Y)和给定点(x1,y1)可计算得到)。

6、等差数列和等比数列公式: 等差数列通项公式:an = a1 + (n-1)d 等差数列前n项和公式:Sn = n/2(a1 + an) 等比数列通项公式:an = a1 × q^(n-1) 等比数列前n项和公式:Sn = (a1 × (1-q^n))/(1-q)。

注意事项

1、熟练运用基本概念和公式:高考数学试题通常涉及较多的公式和基本概念,考生需要熟练掌握并能够快速准确地应用。

2、熟悉图表的阅读及推断能力:数学高考试题涉及较多的图表和数据,考生需要具备熟悉和快速阅读、理解和推断数据的能力。

3、稳定心态,避免紧张和慌乱:数学高考试题较为复杂,需要考生在考场内保持稳定的心态,避免因紧张、慌乱等因素影响答题效果。

4、善于应用数学思维:数学高考试题往往涉及到一些抽象的问题,需要考生具备良好的数学思维和创新精神,善于从多个角度解决问题。

5、精细化答题思路和方法:数学高考试题解题过程中需要考生精细化思路和方法,想到什么就选什么、错了就改正、不偏不倚地回答试题。

文章标签: # cos # sin # 公式