您现在的位置是: 首页 > 教育比较 教育比较

数学高考函数题_高考数学函数经典题型

tamoadmin 2024-05-29 人已围观

简介1.高三文科数学三角函数题~!求助!!~急急急!!!2.3道高中函数数学题请教3.高三数学函数题4.高考数学函数答题方法和技巧5.关于高中数学一道三角函数题!6.高三函数数学题7.(高考数学)若g(x)为奇函数,f(x)为偶函数,且满足g(x)=f(x-1),求f(x)的周期8.高中数学,三角函数题目,求解答,有图讲解(纯手打,解题步骤,可参照之前那位网友的):(1)这一问是一个恒成立问题,对于恒

1.高三文科数学三角函数题~!求助!!~急急急!!!

2.3道高中函数数学题请教

3.高三数学函数题

4.高考数学函数答题方法和技巧

5.关于高中数学一道三角函数题!

6.高三函数数学题

7.(高考数学)若g(x)为奇函数,f(x)为偶函数,且满足g(x)=f(x-1),求f(x)的周期

8.高中数学,三角函数题目,求解答,有图

数学高考函数题_高考数学函数经典题型

讲解(纯手打,解题步骤,可参照之前那位网友的):

(1)这一问是一个恒成立问题,对于恒成立问题,一般是要求出最值的,题中说:

f(x)≥0恒成立,这就说明在函数定义域内,f(x)的最小值要大于或等于0,相对的如果题目说f(x)≤0,则说明函数最大值要小于或等于0,那么问题就转化成求函数最值的问题,由于高中所学的函数全是初等函数,所以在定义域内一定可导,所以只要在定义域内你大可放心去求导,进而去求极值,本题只有极小值,所以也是最小值(如果有极大值又有极小值,或者含有边界值,则要根据题意,比较出一个最大值或是最小值),求出的极小值是,当x=lna时,f(x)为极小值,即f(lna)≥0,解出a≤1,则a最大值为1

(2)这一问仍然是恒成立问题,所以仍然需要求最值,由斜率问题联想到导数,写出AB斜率的表达式,并且代入g(x)表达式,式子,就是答案里的式子(答案中的式子,其实是拉格朗日中值定理的变形,因为高中不学这个定理),把式子变形得到,g(x2)-mx2 > g(x1)-mx1, 到这问题的核心就出现了! 由AB斜率大于m恒成立,将这个条件转化为g(x2)-mx2 > g(x1)-mx1恒成立,这两个式子在题目所给的条件下是等价的,所以你解出g(x2)-mx2 > g(x1)-mx1,也就解出了原题。

现在就是对g(x2)-mx2 > g(x1)-mx1这类式子的处理了,这类式子的共同特点就不等号左右两边的表达式的形式是一样的,那么遇到这种证明恒成立的问题,你可以向这个方面考虑,具体方法就是:令一个函数F(x)=不等号一边的式子,将X1或X2改成x,本题就是F(x)=g(x)-mx,而一般遇到X1≠X2,则可以直接令X1>X2,或X1<X2,这样就转化成F(X1)与F(X2),比较大小的问题了,那么对于函数在不同点的大小问题可以用函数的单调性来解答,进而去判断F(X)的单调性,很自然地就是求导,在这时,你如果是令X2>X1,那么F(X)就是单调增函数(对于本题而言),那么解答就如答案所示,如果你令X2<X1,那么F(X)就是单调递减,则解出m≥g'(x),因为g'(x)≥3,那么是无法定出m的准确取值范围,所以舍去。

综上只有F(X)单调递增时,m的范围可以确定,那么顺着这个思路往下解,用一次基本不等式,然后定出m的范围即可。

(3)遇到这种题目,你先看给出的问题能否变形,因为题目如果想出的难一点,是不会直接提出问题的核心的,需要自己去观察,然后找到核心问题,本题,不等式右边明显有个(2n)^n,这和左边的形式相同,所以先变形,把式子化成(1/2n)^n+(3/2n)^n+……+((2n-1)/2n)^n<√e/(e-1),而此时全看你能不能想到用第一问的条件,用的话,这相当于让你有依据去放缩,否则直接放缩很难证到题目所要的结果,此时就可以按照答案所示的方法,令X=(如答案所示),其实,你可以把a带着,就是e^x≥a(x+1),求到最后,你会发现,如果要满足题意,a就是1,答案那样写的话,就相当于直接告诉你a=1。这种题一般是连在题目的最后一问,如果遇到,就往上找,看能不能用已经证出的条件来解答,能想到,基本就能做出来。这问最后不等号右边是等比数列求和,自己算一下就行了。

给你提条建议,把这类题目整理出来,从中归纳解题的技巧,如找相同的特点,相同的形式,或是类似的问法,然后自己总结成适合自己的理解方式,再加以做题巩固就行了。

纯手打,记得采纳哦~

高三文科数学三角函数题~!求助!!~急急急!!!

一、基本概念:

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列{an}的通项公式an:

6、 数列的前n项和公式Sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

二、基本公式:

9、一般数列的通项an与前n项和Sn的关系:an=

10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:Sn= Sn= Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an≠0)

13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn= Sn=

三、有关等差、等比数列的结论

14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

15、等差数列{an}中,若m+n=p+q,则

16、等比数列{an}中,若m+n=p+q,则

17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

19、两个等比数列{an}与{bn}的积、商、倒数组成的数列

{an bn}、 、 仍为等比数列。

20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

24、{an}为等差数列,则 (c>0)是等比数列。

25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。

26. 在等差数列 中:

(1)若项数为 ,则

(2)若数为 则, ,

27. 在等比数列 中:

(1) 若项数为 ,则

(2)若数为 则,

四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

28、分组法求数列的和:如an=2n+3n

29、错位相减法求和:如an=(2n-1)2n

30、裂项法求和:如an=1/n(n+1)

31、倒序相加法求和:如an=

32、求数列{an}的最大、最小项的方法:

① an+1-an=…… 如an= -2n2+29n-3

② (an>0) 如an=

③ an=f(n) 研究函数f(n)的增减性 如an=

33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:

(1)当 >0,d<0时,满足 的项数m使得 取最大值.

(2)当 <0,d>0时,满足 的项数m使得 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

六、平面向量

1.基本概念:

向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。

2. 加法与减法的代数运算:

(1) .

(2)若a=( ),b=( )则a b=( ).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -

且有| |-| |≤| |≤| |+| |.

向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);

+0= +(- )=0.

3.实数与向量的积:实数 与向量 的积是一个向量。

(1)| |=| |·| |;

(2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0.

(3)若 =( ),则 · =( ).

两个向量共线的充要条件:

(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .

(2) 若 =( ),b=( )则 ‖b .

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2.

4.P分有向线段 所成的比:

设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。

当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0;

分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: .

5. 向量的数量积:

(1).向量的夹角:

已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。

(2).两个向量的数量积:

已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos .

其中|b|cos 称为向量b在 方向上的投影.

(3).向量的数量积的性质:

若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);

⊥b ·b=0 ( ,b为非零向量);| |= ;

cos = = .

(4) .向量的数量积的运算律:

·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.

6.主要思想与方法:

本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。

七、立体几何

1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

能够用斜二测法作图。

2.空间两条直线的位置关系:平行、相交、异面的概念;

会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。

3.直线与平面

①位置关系:平行、直线在平面内、直线与平面相交。

②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。

③直线与平面垂直的证明方法有哪些?

④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}

⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.

4.平面与平面

(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)

(2)掌握平面与平面平行的证明方法和性质。

(3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。

(4)两平面间的距离问题→点到面的距离问题→

(5)二面角。二面角的平面交的作法及求法:

①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;

②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。

③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?

3道高中函数数学题请教

由余弦定理可知2accosB=a^2+c^2-b^2;2abcosc=a^2+b^2-c^2;

代入3acosA=ccosB+bcosC;

得cosA=1/3 ;

∴sinA= 2√3/3

cosB=-cos(A+C)=-cosAcosC+sinAsinC=-1/3 cosC+ 2√3/3 sinC ③

又已知 cosB+cosC= 2√3/3 代入 ③

cosC+√2 sinC=√3 ,与cos^2C+sin^2C=1联立

解得 sinC= √6/3

已知 a=1

正弦定理:c= √3/2

高三数学函数题

1.由log函数性质有 x>0 且x-8>0;所以有x>8 (1)

方程变形:log (下标是2)[上标是 x*(x-8)] =7

x*(x-8)= 2的7次方=128

x的平方-x*8-128=0 x的平方-x*8-16*8=0 (x-16)*(x+8)=0

结合式(1)x>8, 所以方程的解是x=16

2.设至少需要x年。方程:1*(1+20%) (上标是x)=10 (单位是万辆)

问题转换成 1.2的几次方是10。

1.2的12次方是8.92,1.2的13次方是10.7,所以答案是至少需要13年。

3.a+b=log (小标是15)(上标是7)+log (小标是15)(上标是8)=log (小标是15)(上标是7*8)=log (小标是15)(上标是56)

所以log (小标是56)(上标是15)=1/[log (小标是15)(上标是56)]=1/(a+b),

答案就是(a+b)分之一:1/(a+b)

高考数学函数答题方法和技巧

(I)e^x是单调递增函数,因此只要a>0,f(x)就是单调递增函数;

f(x)只与y轴相交,交点A:x=0,y=a;

g(x)=ln(x/a),只与x轴相交,交点B:x=a,g(x)=0;

OAB是等边直角三角形,|AB|=a√2;

点到曲线的距离,与点到直线的距离意义一样,由该点项曲线作“垂线”,点与垂足的连线就是点到该曲线的距离,这个距离在垂足附近最短。这个“垂线”指的是,距离线与垂足处曲线的切线相互垂直。

|AB|是f(x),g(x)上最短距离,意味着,f(x)在A点的切线,g(x)在B点的切线都垂直于AB,AB斜率kAB=(0-a)/(a-0)=-1,切线斜率k=1

f'(x)=ae^x,f'(x)=a=1,

g'(x)=a/x*(1/a)=1/x

g'(a)=1/a=1

a=1

(II)a=1,不等式成为:(x-m)/lnx≥√x,x>0;√x>0;

x=1时,lnx=0,不等式左边无定义,因此以此点分界,分别讨论:

0<x<1时,lnx<0,但是(x-m)/lnx≥√x>0,因此,x-m<0,m>x,必须有m≥1;

(x-m)≤√xlnx,设z=(x-m)-√xlnx≤0;

z'=1-lnx/2√x-√x/x=1-lnx/2√x-1/√x=1-(0.5lnx+1)/√x=1-(ln√x+1)/√x=1-ln[1/(√x)^(√x)]-1/√x

0<x<1;0<√x<1;1/√x>1;0<(√x)^(√x)<1,1/(√x)^(√x)>1,ln[1/(√x)^(√x)]>0;

因此,z'<0,函数递减,只要x->0时,z<0即可;

x->0时,√xlnx是0*∞型不定式,用洛必达法则,先化成∞/∞型,分子分母分别求导:

√xlnx《=》lnx/x^(-0.5)《=》(1/x)/(-0.5x^(-1.5))=-2√x->0,

x->0时,z->-m<0,m>0即可。

因此:m≥1;

x>1时,lnx>0,x-m≥√xlnx>0,x-m>0,m<x,对于所有x>1,恒成立,因此m≤1.

设z=(x-m)-√xlnx≥0;

z'=1-ln[1/(√x)^(√x)]-1/√x

x>1,√x>1,0<1/√x<1,(√x)^(√x)>1,0<1/(√x)^(√x)<1,ln[1/(√x)^(√x)]<0,

z'=1-ln[1/(√x)^(√x)]-1/√x>0,x>1时,z单调递增,只要x->1时,z≥0即可;

x->1,z->1-m≥0,m≤1.

结合起来,m=1;

关于高中数学一道三角函数题!

#高三# 导语怎么答好高考数学函数题? 整理了高考数学函数题答题技巧和方法,供参考。

  高考函数体命题方向

 高考函数与方程思想的命题主要体现在三个方面

 ①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;

 ②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;

 ③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。

  高考数学函数题答题技巧

 对数函数

 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

 对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

 (1)对数函数的定义域为大于0的实数集合。

 (2)对数函数的值域为全部实数集合。

 (3)函数总是通过(1,0)这点。

 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

 (5)显然对数函数无界。

 指数函数

 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得

 可以得到:

 (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

 (2)指数函数的值域为大于0的实数集合。

 (3)函数图形都是下凹的。

 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

 (6)函数总是在某一个方向上无限趋向于x轴,永不相交。

 (7)函数总是通过(0,1)这点。

 (8)显然指数函数无界。

 奇偶性

 一般地,对于函数f(x)

 (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

 说明:①奇、偶性是函数的整体性质,对整个定义域而言

 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

 ③判断或证明函数是否具有奇偶性的根据是定义

  函数的性质与图象

 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.

 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:

 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.

 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数值和最小值的常用方法.

 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.

 这部分内容的重点是对函数单调性和奇偶性定义的深入理解.

 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.

 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.

 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

高三函数数学题

f(x)=sinx/2×cosx/2+cos^2x/2-1/2=1/2sinx+(1+cosx)/2-1/2=1/2sinx+1/2cosx=√2/2sin(x+π/4)

(1)f(a)=√2/2sin(a+π/4)=√2/4

得到sin(a+π/4)=1/2

又a属于(0,π) 所以a+π/4属于(π/4,5π/4)

所以a+π/4=5π/6 得到a=7π/12

(2)x属于[-π/4,π] 得到x+π/4属于[0,5π/4] sin(x+π/4)属于[-√2/2,1]

得到f(x)属于[-1/2,√2/2]

所以函数的最大值是√2/2,最小值是-1/2

(高考数学)若g(x)为奇函数,f(x)为偶函数,且满足g(x)=f(x-1),求f(x)的周期

1 . 对F(x)求导

得F'(x)=(1/x)-a(1/(x^2))

令(1/x)=t t的范围是(1/2,1)

那么t-a/t^2>0

即t^3>a恒成立

由于1>t^3>1/8

所以a≤1/8即可

2...

令t(x)=x^3-x^2-lnx

然后求导得t'(x)=3x^2-2x-1/x

假设t'(x)>0

就有3x^3-2x^2>1

令g(x)=3x^3-2x^2 容易看出g(1)=1 g(0)=0

对g(x)求导得g'(x)=9x^2-4x

令g'(x)>0 解出x>4/9

所以x>4/9时 g(x)为增函数 0<x<4/9时 g(x)为减函数

由于g(1)=1 所以对任意x>1 均有3x^3-2x^2>1成立 当0<x<1 均有3x^3-2x^2<1成立

即x>1时...t(x)为增函数... 0<x<1时..t(x)为减函数

所以t(x)的最小值为t(1)=0

即t(x)≥0

即f(x)≤x^3-x^2

(3)

y1=g[2a/(x^2+1)]+m-1=(x^2+1)/2 +m-1

y2=f(1+x^2)=ln(1+x^2)

令1+x^2=w≥1

此时有

y1=w/2 +m-1

y2=lnw

由w=1+x^2知只要w≥1...就会有一个w的值有两个x值对应.因为x=正负根号w-1

所以只要

y1=w/2 +m-1

y2=lnw

有两个交点即可

由一次函数图像的性质知对于任意m...这个函数y1均平行

考虑相切的时候

对y1函数求导得y1'=1/2 对y2函数求导得1/w

那么就是1/w=1/2 w=2

所当w=2时...两函数相切 切点为(2,ln2)

即2/2+m-1=ln2

解出m=ln2

由图像的性质知y1应该要向下平移才与y2有两个交点

所以m<ln2

高中数学,三角函数题目,求解答,有图

根据奇函数、偶函数定义和题设,显然有:

g(-x)=f(-x-1)=f(x+1)=f(x+2-1)=g(x+2)=-g(-x-2)=-f(-x-2-1)=-f(-x-3)=-f(x+3)

同时g(-x)=-g(x)=-f(x-1)

因此,-f(x-1)=-f(x+3),左右同乘以-1,令t=x-1,有f(t)=f(t+4),根据周期定义,周期为4

反复利用性质来回变就行,注意要求周期一定让函数里面的x变成同号的才能求周期!

f(x)=2sin(2x+π/3),若当x?[π/12,7π/12]时其反函数为f?(x),求f?(x)。

解:π/12≦x≦7π/12,π/6≦2x≦7π/6,π/2≦2x+π/3≦3π/2;故当x?[π/12,7π/12]时f(x)确

有反函数。

y=2sin(2x+π/3),定义域:x?[π/12,7π/12];值域:[-2,2]。

sin(2x+π/3)=y/2,2x+π/3=arcsin(y/2),2x=arcsin(y/2)-π/3;

x=(1/2)arcsin(y/2)-π/6;交换x,y,便得反函数f?(x)=(1/2)arcsin(x/2)-π/6,(-2≦x≦2);

题目有错!只能求反函数,不能求反函数的值!因为你没有给定x,故反函数的值是不的!

如果f?(x)=(1/2)arcsin(x/2)-π/6=π/4,则(1/2)arcsin(x/2)=π/4+π/6=5π/12;arcsin(x/2)=5π/6;

x/2=sin(5π/6)=sin(π-π/6)=sin(π/6)=1/2,故得x=1。

文章标签: # 函数 # gt # 向量