您现在的位置是: 首页 > 教育比较 教育比较
充要条件高考题,充要条件高考题目
tamoadmin 2024-06-12 人已围观
简介1.高中数学充分必要条件的判断技巧2.2016年成人高考高起专数学一般考哪些知识点3.高中数学有哪些重要的知识点需要掌握,高考大问答题又会考哪些知识点4.高考乙卷数学选择题答案分布规律是什么5.2011浙江数学高考第6题为啥是即不充分也不必要条件,求详解!6.关于高中数学的充要条件充分条件和必要条件是逻辑学中常用的两个概念,它们之间的区别如下:1. 充分条件:指一个条件如果成立,那么结论一定成立。
1.高中数学充分必要条件的判断技巧
2.2016年成人高考高起专数学一般考哪些知识点
3.高中数学有哪些重要的知识点需要掌握,高考大问答题又会考哪些知识点
4.高考乙卷数学选择题答案分布规律是什么
5.2011浙江数学高考第6题为啥是即不充分也不必要条件,求详解!
6.关于高中数学的充要条件
充分条件和必要条件是逻辑学中常用的两个概念,它们之间的区别如下:
1. 充分条件:指一个条件如果成立,那么结论一定成立。也就是说,这个条件是导致结论成立的原因之一,但不是唯一的原因。例如,一个人要成为医生,必须完成医学专业的学习,但完成医学专业的学习并不是成为医生的唯一条件。
2. 必要条件:指一个条件必须成立,否则结论一定不成立。也就是说,这个条件是结论成立的充分必要条件。例如,一个人要成为医生,必须取得医生资格证书,没有取得医生资格证书的人就不能成为医生。
总的来说,充分条件和必要条件都是逻辑学中非常重要的概念,它们的区别在于对于结论成立的影响程度不同。充分条件只是导致结论成立的一种因素,而必要条件则是结论成立的必要前提。
举个例子来说明充分条件和必要条件的区别:
假设有一个命题:“如果一个人喜欢音乐,那么他可能会学习钢琴。” 这里,“喜欢音乐”是充分条件,“学习钢琴”是结论。也就是说,如果一个人喜欢音乐,那么他学习钢琴的可能性比较大,但是并不是只有喜欢音乐才能学习钢琴。
再举一个例子:“要成为一名空姐,必须拥有英语流利的口语和听力。” 这里,“英语流利的口语和听力”就是必要条件,“成为一名空姐”是结论。也就是说,如果一个人没有英语流利的口语和听力,那么她就不能成为一名空姐。
总之,充分条件和必要条件在逻辑学中都有着重要的应用,理解它们的区别可以帮助我们更好地理解论证和推理过程。
高中数学充分必要条件的判断技巧
1.与向量概念有关的问题
⑴向量不同于数量,数量是只有大小的量(称标量),而向量既有大小又有方向;数量可以比较大小,而向量不能比较大小,只有它的模才能比较大小.记号“ > ”错了,而| |>| |才有意义.
⑵有些向量与起点有关,有些向量与起点无关.由于一切向量有其共性(力和方向),故我们只研究与起点无关的向量(既自由向量).当遇到与起点有关向量时,可平移向量.
⑶平行向量(既共线向量)不一定相等,但相等向量一定是平行向量,既向量平行是向量相等的必要条件.
⑷单位向量是模为1的向量,其坐标表示为( ),其中 、 满足 =1(可用(cos ,sin )(0≤ ≤2π)表示).
⑸零向量 的长度为0,是有方向的,并且方向是任意的,实数0仅仅是一个无方向的实数.
⑹有向线段是向量的一种表示方法,并不是说向量就是有向线段.
2.与向量运算有关的问题
⑴向量与向量相加,其和仍是一个向量.
①当两个向量 和 不共线时, 的方向与 、 都不相同,且| |<| |+| |;
②当两个向量 和 共线且同向时, 、 、 的方向都相同,且 ;
③当向量 和 反向时,若| |>| |, 与 方向相同 ,且| |=| |-| |;
若| |<| |时, 与 方向相同,且| + |=| |-| |.
⑵向量与向量相减,其差仍是一个向量.向量减法的实质是加法的逆运算.
⑶围成一周首尾相接的向量(有向线段表示)的和为零向量.
如, ,(在△ABC中)
.(□ABCD中)
⑷判定两向量共线的注意事项
如果两个非零向量 , ,使 =λ (λ∈R),那么 ‖ ;
反之,如 ‖ ,且 ≠0,那么 =λ .
这里在“反之”中,没有指出 是非零向量,其原因为 =0时,与λ 的方向规定为平行.
⑸数量积的8个重要性质
①两向量的夹角为0≤ ≤π.由于向量数量积的几何意义是一个向量的长度乘以另一向量在其上的射影值,其射影值可正、可负、可以为零,故向量的数量积是一个实数.
②设 、 都是非零向量, 是单位向量, 是 与 的夹角,则
③ (∵ =90°,
④在实数运算中 =0 =0或b=0.而在向量运算中 = = 或 = 是错误的,故 或 是 =0的充分而不必要条件.
⑤当 与 同向时 = ( =0,cos =1);
当 与 反向时, =- ( =π,cos =-1),即 ‖ 的另一个充要条件是 .
特殊情况有 = .
或 = = = .
如果表示向量 的有向线段的起点和终点的坐标分别为( , ),( , ),则 =
⑥ 。(因 )
⑦数量积不适合乘法结合律.
如 (因为 与 共线,而 与 共线)
⑧数量积的消去律不成立.
若 、 、 是非零向量且 并不能得到 这是因为向量不能作除数,即 是无意义的.
6.与平面向量基本定理及平移有关的问题
⑴平面向量基本定理是平面向量坐标表示的基础,它表明同一平面内的任一向量都可表示为其他两个不共线向量的线性组合.
⑵平面向量基本定理可联系物理学中力的分解模型进行理解。
⑶点的平移公式:
点 按给定平移向量 平移后得新点 的坐标公式为
反之,由新点求旧点公式变为
由新旧两点求平移向量公式为
⑷图象(图形)平移:
给定平移向量 = ,由旧解析式求新解析式,用公式
代入旧解析式中,整理得到;
由新解析式求旧解析式,用公式
代入新式,整理得到。
应用以上公式要注意公式中平移前的坐标 、平移后的坐标 、平移向量坐标 都在同一坐标系中。
确定平移向量一般可采用如下两种方法:
其一,配凑法:按题目要求进行配凑,如将 化简,即可配凑为: 则公式为 此时平移向量为
其二,待定系数法:按要求代入公式,再根据题目要求求出
经典题例
例1 是不共线的两个向量,
已知
若 三点共线,求 值.
思路分析由于 三点共线,因此必存在实数 ,使 ,因而可根据已知条件和向量相等的条件得到关于 的方程,从而求 .
解:略∴ =-1.
点评
用向量共线的充要条件有时可以很容易解决几何中的三点共线问题.
例2证明三角形三条高线交于一点.
思路分析此题可利用“形”、“数”结合的方法,通过直角坐标系将几何图形数字化,则问题解决更简洁、更易接受.
证明:如图建立直角坐标系,
设
所以 是 上的高,故 的三条高交于一点 .
点评本题把两直线是否垂直的问题转化为两个非零向量的数量积是否为零的问题.
例3已知向量
满足条件 , ,
求证:△ 是正三角形.
思路分析观察条件中的两个等式,联系向量模及加法的几何意义,可构造图形巧证.如图1.又据条件易知O为定点,故可适当选取坐标系,借助向量的坐标运算,将几何问题代数化.如图2.也可联想三角知识进行坐标选取.如 使得选取具有任意性.且巧妙运用了三角变形.证明 为正三角形可从边或角的关系着手,联系两个向量数量积的有关知识可获得两种证法.
证法一:如图1略.
证法2如图2略.
证法三:据| |= ,
令
由 得
可求得| |= ,所以 为正三角形.
证法四:设
由已知得 | |= ,所以 为正三角形。
证法五:同证法四求得 ,于是 = 所以 ,由此可证 为正三角形.
点评以上五种证法,不仅实现了向量重要知识的一次大聚会,而且通过向量与三角、几何联姻,开阔了学生的眼界,培养了综合运用知识的能力.
例4如图,已知点 是△ 的重心,
⑴求 ;
⑵若 过△ 的重心 ,且 求证:
思路分析充分运用向量的几何形式运算.及向量平行的定理及推论,把相关向量用已知向量表示即可.
解:⑴
⑵显然
因为 是 的重心,
所以 =
由 、 、 三点共线,有 共线,所以,有且只有一个实数 ,
而 = - =
,
所以
= .又因为 、 不共线,所以
,消去 ,整理得3 = ,故 .
点评建立 与 的关系关键是由 三点共线得出.为此要熟练运用已知向量表示未知向量.
例5如图,直三棱柱 — ,底面 中, ,∠ °,棱 , 分别是 , 的中点. z
⑴求 的长;
⑵求 〈 , 〉的值;
⑶求证 ⊥ .
思路分析以 为原点建立空间坐标系,写出有关点的坐标,并进行有关运算.
解:如图,以 为原点建立空间直角坐标系O- .
⑴依题意得 =(0,1,0), =(1,0,1).
∴| |=
= .
⑵依题意得A1(1,0,2),B(0,1,0),C(0,0,0), B1(0,1,2).
∴ =(1,-1,2), =(0,1,2).
| |= ,| |= ,
∴ 〈 , 〉 =
⑶依题意得 (0,0,2),M(
=(-1,1,-2), =( .
= .
∴ ⊥ ,∴ ⊥C .
点评利用题中已知条件,选取恰当点建立空间坐标系,并写出相应点的坐标是这类题的关键.
例6四棱锥P—ABCD中,底面ABCD是一个平行四边形, , ={4,2,0}, ={-1,2,-1}.
⑴求证:PA⊥底面ABCD;
⑵求四棱锥P—ABCD的体积;
⑶对于向量 定义一种运算:
( × =
试计算( × ) 的绝对值的值;说明其与四棱锥P—ABCD体积的关系,并由此猜想向量这一运算( × ) 的绝对值的几何意义.
思路分析根据所给向量的坐标,结合运算法则进行运算.
解:⑴∵ ∴AP⊥AB
又∵ AP⊥AD,∵AB、AD是底面ABCD上的两条相交直线,∴AP⊥底面ABCD。
⑵设 与 的夹角为 ,则
V= | | |=
⑶|( × ) |=|-4-32-4-8|=48.
它是四棱锥P—ABCD体积的3倍.
猜测:| ( × ) |在几何上可表示以AB、AD、AP为棱的平行六面体的体积(或以AB、AD、AP为棱的直四棱锥的体积)。
点评本题考察空间向量的坐标表示、空间向量的数量积、空间向量垂直的充要条件、空间向量夹角运算公式和直线与平面垂直的判定定理、棱锥的体积公式等.
例7如图,已知椭圆 ,直线 : P是 上一点,射线OP交椭圆与点R,又点Q在OP上,且满足|OQ||OP|= .当点P在L上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.
思路分析将 看作向量,则它们共线而切同向,利用向量共线的充要条件,结合平面向量的坐标表示可迅速解题.
解:设
∵ 、 同向,且|OQ||OP|=
代入L方程得 ⑴
同向
代入椭圆方程得 ⑵
由①、②得 不全为0), 点Q的轨迹为椭圆 (去掉原点).
点评解析几何解答题中以向量知识为主线,用向量坐标形式表示已知条件可达到解题目的.
例8从抛物线 外的一点P(a,b)向该抛物线引切线PA,PB.
① 求切点A,B的坐标. (其中A的x坐标大于B的x的坐标).
② 求 的值.
③ 当∠APB为锐角时,求点P的纵坐标的取值范围.
解:① 从 得 =2x,因此设切点的x坐标为 ,切线方程便为
由于该切线通过P点,从而 由于引出两条切线,故 >0所以切点的坐标为A
②
④ 若∠APB为锐角,则有 >0,所以4b+1<0因此P的纵坐标的取值范围是b<-
热身冲刺
一.选择题
1.已知向量 和 反向,则下列等式成立的是( ).
A.| | -| |=| |
B.
C. | |
D.
2.已知向量 ,其中 则满足条件的不共线的向量共有( ).
A.16个 B.13个 C.12个 D.9个
3.函数 的图象按向量 平移后,所得函数的解析式是 则 等于( ).
A. B.
C. D.
4.已知若 和 夹角为钝角,则 的取值范围是( )
A. > B. ≥ < ≤
5.已知向量 = , = 与 的夹角为60°,则直线 与圆 的位置关系是( ).
A. 相切 B.相交 C.相离 D.随α、β的值而定
6.平面上有四个互异的点A、B、C、D,已知 则 的形状是( ).
A. 直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形
7.已知 中,点D在BC边上,且 则 的值是( ).
A. B. C. D.0
8.已知A、B、C三点共线,且A、B、C三点的纵坐标分别为2、5、10,则A点分 所得的比是( ).
A. B. C. D.
9.下列说法正确的是( )
A. 任何三个不共线的向量都可构成空间的一个基底.
B. 单位正交基底中的基向量模为1,且互相垂直.
C. 不共面的三个向量就可构成空间的单位正交基底.
D. 只要对空间一点P存在三个有序实数x,y,z,使O,A,B,C四点满足 则 就构成空间的一个基底.
10.同时垂直于 的单位向量是( )
A. B.( C.( )D.( )或( )
11.若 ,则| |的取值范围是( )
A.[0,5] B.[1,5] C.(1,5) D.[1,25]
12.已知 若 共同作用在一个物体上,使物体从点 移到点 ,则合力所做的功为( )
A. 10 B.12 C.14 D.16
二.填空题
13.若对 个向量 … 存在 个不全为零的实数 …, ,使得 …,+ 成立,则称向量 … 为“线性相关”.依此规定,能说明 “线性相关”的实数 依次可以取 .(写出一组数值即可,不必考虑所有情况)
14.若直线 按向量 平移后与圆 : 相切,则实数m的值等于 .
15.已知 中, <0, =
则 与 的夹角为 .
16.已知 ,则以 、 为边的平行四边形的两条高的长 .
三.解答题
17.在平行四边形ABCD中,A , ,点M是线段AB的中点,线段CM与BD交于点P.
⑴若 求点C的坐标;
⑵当| |=| |时,求点P的轨迹.
18.已知 且 与 之间满足关系: 其中k>0.
⑴用k表示
⑵求 的最小值,并求此时 与 夹角 的大小. C A
19.如图,正方形 与等腰直角 G
△ ACB互相垂直,∠ACB= ,E、F C A
分别是AB、BC的中点,G是 上的点. F E
⑴如果 试确定点 的位置; B
⑵在满足条件⑴的情况下,试求 < >的值.
20.如图,已知三棱锥P-ABC在某个
空间直角坐标系中, P
⑴画出这个空间直角坐标系,并指 A C
出 与 轴的正方向的夹角.
⑵求证: ; B
⑶若M为BC的中点,
求直线AM与平面PBC所成角的大小.
答案
选择题答案:
1.C; 2.C; 3.B; 4.B; 5.C; 6.B; 7.D; 8.C; 9.B; 10.D; 11.B; 12.C
填空题答案:
13.只要写出-4c,2c,c中一组即可. 14.3或13.
15. . 16. ;
解答题答案:
17.⑴设点C坐标为( ),又 即 即点 .
⑵设 则
=3
ABCD为菱形.
⊥ 即
故点P的轨迹是以(5,1)为圆心,2为半径去掉与直线y=1的两个交点.
18. ⑴ 两边平方,得 ,
即
⑵ 从而 ,∴ 的最小值为 ,此时 , ,即 与 夹角为 .
19. ⑴易知
以C为坐标原点,建立空间直角坐标
系C-x,y,z,,设AC=CB=a.
AG=x,则A(0,a,0), (0,0,a),
G(0,a,x),E( ).
G为 的中点.
〈 〉=
20. ⑴以A为坐标原点O,以AC为Oy轴,以AP所在直线为Oz轴, 与Ox轴的正向夹角为30°;
⑵由 去证;
⑶连AM、PM,可证∠AMP为AM 与平面PBC所成角,又n=
故所成角为45°.
2016年成人高考高起专数学一般考哪些知识点
高中数学充分必要条件的判断,说难,比起导数相关问题,简单许多;但是比起三角函数,又不是很简单。笔者也是从高考过来的,也经历过高中数学,也曾经为怎样判断充分必要条件掉过很多头发,下面是笔者整理的一些关于充分必要条件判断的技巧,希望能对你有所帮助:
1. 利?定义判断。如果已知,则p是q的充分条件,q是p的必要条件。根据定义可进?判断。
2. 利?等价命题判断。原命题与其逆否命题是“同真同假”的等价命题,当我们直接判断原命题的真假有困难时,可以转化为判断其逆否命题的真假。
3. 把充要条件“直观化”。如果,我们可以形象地认为p是q的“?集”;如果,我们认为p不是q的“?集”,根据集合的包含关。
我们要仔细审核题目,看清楚p和q的所在位置以及箭头指向,在结合所学课本知识进行判断,只要理清楚题目所表达的具体意思,判断这种题目,都不是什么难的事儿。
高中数学有哪些重要的知识点需要掌握,高考大问答题又会考哪些知识点
2016年成人高考高起专数学一般考的知识点有:
知识点一:集合思想及应用
集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用。本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用。
例题:已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠?,求实数m的取值范围。
知识点二:充要条件的判定
充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系。本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系。
例题:已知关于x的实系数二次方程x2+ax+b=0有两个实数根α、β,证明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要条件
知识三:运用向量法解题
平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题。
例题:三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cosABC的值。
知识点四:三个“二次”及关系
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具。高考试题中近一半的试题与这三个“二次”问题有关。本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。
例题:已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程?=|a-1|+2的根的取值范围。
知识点五:求解函数解析式
求解函数解析式是高考重点考查内容之一,需引起重视。本节主要帮助考生在深刻理解函数定义的基础上,掌握求函数解析式的几种方法,并形成能力,并培养考生的创新能力和解决实际问题的能力。
例题:(1)已知f(2-cosx)=cos2x+cosx,求f(x-1)。
(2)已知函数f(x)满足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表达式。
(3)已知二次函数f(x)=ax2+bx+c满足|f(1)|=|f(-1)|=|f(0)|=1,求?f(x)的表达式。
高考乙卷数学选择题答案分布规律是什么
高中数学重点知识与结论分类解析
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合 , 时,必须注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为
4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.
5.判断命题的真假 关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” ?.
8.充要条件
二、函 数
1.指数式、对数式, , ,
,
, , , , , , .
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.
(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.对于偶函数而言有: .
(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.
(4)既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).
(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。(即复合有意义)
4.对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数 与函数 的图像关于直线 ( 轴)对称.
推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.
推广二:函数 , 的图像关于直线 (由 确定)对称.
(2)函数 与函数 的图像关于直线 ( 轴)对称.
(3)函数 与函数 的图像关于坐标原点中心对称.
推广:曲线 关于直线 的对称曲线是 ;
曲线 关于直线 的对称曲线是 .
(5)类比“三角函数图像”得:若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .
如果 是R上的周期函数,且一个周期为 ,那么 .
特别:若 恒成立,则 .若 恒成立,则 .若 恒成立,则 .
三、数 列
1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).
注意: ; .
2.等差数列 中:
(1)等差数列公差的取值与等差数列的单调性.
(2) ; .
(3) 、 也成等差数列.
(4)两等差数列对应项和(差)组成的新数列仍成等差数列.
(5) 仍成等差数列.
(6) , , , , .
(7) ; ; .
(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;
“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;
(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.
(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.
(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).
3.等比数列 中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.
(2) ; .
(3) 、 、 成等比数列; 成等比数列 成等比数列.
(4)两等比数列对应项积(商)组成的新数列仍成等比数列.
(5) 成等比数列.
(6) .
特别: .
(7) .
(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;
(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.
(10)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).
4.等差数列与等比数列的联系
(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.
(2)如果数列 成等比数列,那么数列 必成等差数列.
(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.
注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.
5.数列求和的常用方法:
(1)公式法:①等差数列求和公式(三种形式),
②等比数列求和公式(三种形式),
③ , , , .
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:
① ,
② ,
特别声明:?运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.
(6)通项转换法。
四、三角函数
1. 终边与 终边相同( 的终边在 终边所在射线上) .
终边与 终边共线( 的终边在 终边所在直线上) .
终边与 终边关于 轴对称 .
终边与 终边关于 轴对称 .
终边与 终边关于原点对称 .
一般地: 终边与 终边关于角 的终边对称 .
与 的终边关系由“两等分各象限、一二三四”确定.
2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .
3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
注意: ,
, .
4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .
5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.
7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
如 , , , , 等.
常值变换主要指“1”的变换:
等.
三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化).解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.
注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的联系”(常和三角换元法联系在一起 ).
辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .
8.三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:
(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.
9.三角形中的三角函数:
(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.
(2)正弦定理: (R为三角形外接圆的半径).
注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.
(4)面积公式: .
五、向 量
1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).
3.两非零向量平行(共线)的充要条件
.
两个非零向量垂直的充要条件
.
特别:零向量和任何向量共线. 是向量平行的充分不必要条件!
4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.
5.三点 共线 共线;
向量 中三终点 共线 存在实数 使得: 且 .
6.向量的数量积: , ,
,
.
注意: 为锐角 且 不同向;
为直角 且 ;
为钝角 且 不反向;
是 为钝角的必要非充分条件.
向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).
7.
注意: 同向或有 ;
反向或有 ;
不共线 .(这些和实数集中类似)
8.中点坐标公式 , 为 的中点.
中, 过 边中点; ;
. 为 的重心;
特别 为 的重心.
为 的垂心;
所在直线过 的内心(是 的角平分线所在直线);
的内心.
.
六、不等式
1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.
(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);
(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.
2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
3.常用不等式有: (根据目标不等式左右的运算结构选用)
a、b、c R, (当且仅当 时,取等号)
4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法
5.含绝对值不等式的性质:
同号或有 ;
异号或有 .
注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).
6.不等式的恒成立,能成立,恰成立等问题
(1).恒成立问题
若不等式 在区间 上恒成立,则等价于在区间 上
若不等式 在区间 上恒成立,则等价于在区间 上
(2).能成立问题
若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上
若在区间 上存在实数 使不等式 成立,即 在区间 上能成立, ,则等价于在区间 上的 .
(3).恰成立问题
若不等式 在区间 上恰成立, 则等价于不等式 的解集为 .
若不等式 在区间 上恰成立, 则等价于不等式 的解集为 ,
七、直线和圆
1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .
注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)
与直线 平行的直线可表示为 ;
与直线 垂直的直线可表示为 ;
过点 与直线 平行的直线可表示为:
;
过点 与直线 垂直的直线可表示为:
.
(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.
3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .
注:点到直线的距离公式
.
特别: ;
;
.
4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
5.圆的方程:最简方程 ;标准方程 ;
一般式方程 ;
参数方程 为参数);
直径式方程 .
注意:
(1)在圆的一般式方程中,圆心坐标和半径分别是 .
(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:
, ,
,
.
6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是: .
如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.
如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).
7.曲线 与 的交点坐标 方程组 的解;
过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.
八、圆锥曲线
1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
(1)注意:①圆锥曲线第一定义与配方法的综合运用;
②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:
2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .
重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.
注意:等轴双曲线的意义和性质.
3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.
②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.
③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式
( , , )或“小小直角三角形”.
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.
4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.
九、直线、平面、简单多面体
1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理, ),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等 斜线在平面上射影为角的平分线.
3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
特别声明:
①证明计算过程中,若有“中点”等特殊点线,则常借助于“中位线、重心”等知识转化.
②在证明计算过程中常将运用转化思想,将具体问题转化 (构造) 为特殊几何体(如三棱锥、正方体、长方体、三棱柱、四棱柱等)中问题,并获得去解决.
③如果根据已知条件,在几何体中有“三条直线两两垂直”,那么往往以此为基础,建立空间直角坐标系,并运用空间向量解决问题.
4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.
如长方体中:对角线长 ,棱长总和为 ,全(表)面积为 ,(结合 可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式), ;
如三棱锥中:侧棱长相等(侧棱与底面所成角相等) 顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直) 顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内 顶点在底上射影为底面内心.
如正四面体和正方体中:
5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱 平行六面体 分割:三棱柱中三棱锥、四三棱锥、三棱柱的体积关系是 .
6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种, 即正四面体、正六面体、正八面体、正十二面体、正二十面体.
9.球体积公式 ,球表面积公式 ,是两个关于球的几何度量公式.它们都是球半径及的函数.
十、导 数
1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数). , (C为常数), , .
2.多项式函数的导数与函数的单调性:
在一个区间上 (个别点取等号) 在此区间上为增函数.
在一个区间上 (个别点取等号) 在此区间上为减函数.
3.导数与极值、导数与最值:
(1)函数 在 处有 且“左正右负” 在 处取极大值;
函数 在 处有 且“左负右正” 在 处取极小值.
注意:①在 处有 是函数 在 处取极值的必要非充分条件.
②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑 ,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.
③单调性与最值(极值)的研究要注意列表!
(2)函数 在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”;
函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;
注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小值.
4.应用导数求曲线的切线方程,要以“切点坐标”为桥梁,注意题目中是“处?”还是“过?”,对“二次抛物线”过抛物线上一点的切线 抛物线上该点处的切线,但对“三次曲线”过其上一点的切线包含两条,其中一条是该点处的切线,另一条是与曲线相交于该点.
5.注意应用函数的导数,考察函数单调性、最值(极值),研究函数的性态,数形结合解决方程不等式等相关问题.
十一、概率、统计、算法(略) 赞同
2011浙江数学高考第6题为啥是即不充分也不必要条件,求详解!
高考数学选择题题型及分布规律都非常固定,选择题大家要根据近几年试卷总结常考题型和知识点,这些内容一般会是高频考点,先攻克这些内容,然后再去突破一些不稳定题型或者创新题。
2023高考数学选择题题型及分布规律
1.集合交并补运算? 2.充分必要条件,命题真假? 3.复数四则运算? 4.三视图恢复与,体积表面积内外截球计算? 5.算法循环结构 6.概率,排列组合计算,积分计算? 6.函数奇偶周期对称抽象函数与导函数(及结论)? 7.分段函数 8.空间几何平行垂直夹角体积计算? 9.线性规划? 10.三角函数求值? 11.解三角形相关夹角面积周长
12.向量共线垂直乘积夹角模长最值及向量有关三角形计算等? 13.数列通项,某一项,求和,最值? 14.复杂图形辨别及导数相关图形辨别? 15.函数比较大小,非常规(指数,对数,三角,抽象)不等式求解及恒成立,参数范围求解。 16.基本不等式相关最值? 17.统计(抽样,频率分布直方图,数字特征及图形相关概率)
18.导函数,抽象导函数,单调性,切线,最值及导数不等式压轴? 19.线(直线,切线,弦),曲线(椭圆,双曲线,抛物线),点(中点),图形(三角形,菱形,矩形)与圆(特殊,普通)关系? 20.圆锥曲线方程,离心率,最值及参数等相关计算? 21.创新题? 22.综合类复杂题多为参数范围求解综合类问题
2023高考数学选择题解题技巧
1、剔除法:利用数学选择题已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2、特特殊值检验法:对于具有一般性的数学选择题问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
关于高中数学的充要条件
你好,你说的题目是(文科卷)的第六题:若a,b为实数,则“0<ab<1”是“b<1/a”的(
)理科的第七题多加了或a>1/b
解答:充分条件:
因为0<ab<1仅能说明ab乘积的结果是正数,只能得出a、b同号,即同正同负。
所以无法利用ab<1两边同除以实数a而不改变不等式符号得到b<1/a的结论。当a、b<0时,那么此时的不等号就要改变了。
故不是充分条件。
必要条件:
b<1/a更加无法推断出0<ab<1这个结论了。若a>0时,仅能推出ab<1,无法得到ab>0的下限,再则还有若a<0时,就得出ab>1了,所以在a,b是实数的范围内,根本无法得出0<ab<1。
故也不是必要条件。
所以,最终的结论是:既非充分条件也非必要条件。
希望我的回答,你能够满意。不过在考场答题的时候,最好是选择最简便的最快速的方法来做。
充要条件(the necessary and sufficient conditions) 如果能从命题p推出命题q,那么条件p是条件q的充分条件 如果能从命题q推出命题p ,那么条件p是条件q的必要条件 如果能从命题p推出命题q,且能从命题q推出命题p,那么 条件q与条件p互为充分必要条件,简称充要条件 以上是从逻辑推理关系说明 我们也可以从元素、集合的角度看 集合A=集合B 则A是B的充分必要条件,简称充要条件 如果命题A是命题B的充要条件,那么命题B也是命题A的充要条件 “充分条件”“必要条件”的概念:当“若p则q”形式的命题为真时,就记作p q,称p是q的充分条件,同时称q是p的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假. 简单的说就是在p与q互相推导时,前面那个推出后面那个就是充分条件,后面那个推出前面那个就是必要条件,前面能推出后面同时后面也能推出前面就是充要条件。 举例:1、矩形对边平行。 对于这个命题,“该四边形是矩形”是“该四边形对边平行”的充分(不必要)条件。 “该四边形对边平行”是“该四边形是矩形”的必要条件。 2、平行四边形两组对边分别平行。 “该四边形为平行四边形”与“该四边形两组对边分别平行”互为充要条件。 如果p<=>q,那么p与q互为充要条件
(PS:高中的课本上有的啊,你想问怎么学的话,可以做5年3年啊,高考真题啊什么的练手啊,最简单就是不厌其烦地去问老师,直到懂为止,这时不要怕难为情)