您现在的位置是: 首页 > 教育比较 教育比较
最近几年的数学高考试题_最近几年的数学高考试题都一样吗
tamoadmin 2024-06-20 人已围观
简介1.高考数学解答题的特点2.2023年江苏高考数学试卷难吗3.如何评价 2021 高考全国乙卷数学?今年题目难度如何?4.求近几年数学高考试卷(带答案,最好是湖北省的)2021年数学难度不大,数学科新高考在应用性进行重点探索,取得突破。前面选择都不是很难,基本都是平日练习的常规题型,有个别有难度的题目,但是只要仔细分析也能逐渐找出解题思路。试题的阅读量和计算量都不是很大,考察数列的大题和最后一道关
1.高考数学解答题的特点
2.2023年江苏高考数学试卷难吗
3.如何评价 2021 高考全国乙卷数学?今年题目难度如何?
4.求近几年数学高考试卷(带答案,最好是湖北省的)
2021年数学难度不大,数学科新高考在应用性进行重点探索,取得突破。前面选择都不是很难,基本都是平日练习的常规题型,有个别有难度的题目,但是只要仔细分析也能逐渐找出解题思路。试题的阅读量和计算量都不是很大,考察数列的大题和最后一道关于导数的大题难度比较大。变化:
试题注重理论联系实际,体现数学的应用价值,并让学生感悟到数学的应用之美。理论联系实际的试题,体现现代科技发展和现代社会生产等方面的特点,有机渗透数学建模、数据分析、逻辑推理等数学核心素养与数学思想方法的应用,对选拔与育人具有积极的意义。
试题特点
试题突出数学本质,重视理性思维,坚持素养导向、能力为重的命题原则;倡导理论联系实际、学以致用,关注我国社会主义建设和科学技术发展的重要成果,设计真实问题情境,体现数学的应用价值。
试卷稳步推进改革,科学把握必备知识与关键能力的关系,科学把握数学题型的开放性与数学思维的开放性,稳中求新,全面体现了基础性、综合性、应用性和创新性的考查要求。
高考数学解答题的特点
线性规划问题,约束区域为三角形,三顶点为(-1,0),(3,0),(1,2)。
函数z=2x+y最大值:视z为直线y=-2x+z的y-截距,此直线斜率为-2
所以,过约束区域斜率-2直线中,截距最大值即为z,当此直线过(3,0)时得到,为6,正确答案为C。
2023年江苏高考数学试卷难吗
在高考数学中,主要有选择题,填空题以及解答题三大类型的题型。其中选择题可以看作是差生与普通学生的差异点。因为选择题整体难度不高,更偏向于考察最基础的知识。而填空题则是普通学生与良好学生的分界线。相对于选择题,填空的难度更高,容错性更低。而最后的解答题则是良好学生与优秀学生的分水岭。
占分比重最大解答题的题量虽然比不上选择题,但是其占分的比重最大,足见它在试卷中地位之重要。
试题模式灵活多变解答题也就是通常所说 的主观性试题,这种题型内涵丰富,包含的试题模式灵活多变,其基本构架是:先给出一定的题设(即已知条件),然后提出一定的要求 (即要达到的目标),再让考生解答,而且“题设”和“要求”的模式多种多样。
出题较稳定从近几年看,解答题的出处较稳定,一般为数列、三角函数(包括解三角形)、概率、立体几何(与向量整合)、函数与导数及不等式、解析几何等。
探究能力和创新能力的考查注重探究能力和创新能力的考查.探索性试题是考查这种能力的好素材,因此在试卷中占有重要的作用;同时加强了对应用性问题的考查。
运算与推理互相渗透运算与推理互相渗透,推理证明与计算紧密结合,运算能力强弱对解题的成败有很大影响.在考查逻辑推理能力时,常常与运算能力结合考查,推导与证明问题的结论,往往要通过具体的运算;在计算题中,也较多地掺进了逻辑推理的成分,边推理边计算。
如何评价 2021 高考全国乙卷数学?今年题目难度如何?
2023年江苏高考数学试卷难,具体原因如下:
2023江苏高考数学试题总体来说难度有所增加。2023年江苏数学高考试题在严格把控难度比例的同时,又设计了分明的梯度,为不同水平的考生提供了发挥空间。江苏高考数学试卷总体来说难度加大,部分考完高考数学的考生表示,数学题很难。
高考数学答题技巧:
1、题目阅读
在开始解答任何题目之前,仔细阅读题目并理解问题的要求。注意关键词、条件和限制,确保对问题有清晰的认识。
2、制定解题计划
针对每道题目,可以根据题目类型和难度来制定解题计划。确定采用的解题方法和步骤,以及需要使用的公式或概念。
3、掌握基本知识和公式
高考数学考试侧重于基础知识的应用,所以要熟悉并掌握各类基本数学知识和公式。这包括几何图形的性质、三角函数、方程与不等式、向量、数列等等。
高考数学备考方法:
1、深入理解基础知识
高考数学考试侧重于基础知识的应用和灵活运用能力。因此,首先要全面掌握数学基础知识,包括各类公式、定理和概念的理解。通过系统学习教材,注重理论与实践的结合,多做基础题,培养对数学概念和原理的深入理解。
2、做题方法和技巧的训练
在备考过程中,熟悉和掌握一些解题方法和技巧对提高解题效率和准确性非常重要。可以通过参考解题套路、学习经典例题的解答思路,积累并灵活运用解题的方法和技巧。同时,要注重时间管理,针对不同题型和难度设置合理的解题时间,提高解题速度。
3、多做真题和模拟考试
高考数学真题是了解考试形式和水平的重要参考资料。通过做真题,可以熟悉考试要求、了解命题风格,掌握考点分布和难易度。此外,模拟考试也是非常必要的,可以提前适应高考的紧张氛围和时间压力,检验自己的备考效果,并根据模拟考试的结果进行针对性的调整和提高。
求近几年数学高考试卷(带答案,最好是湖北省的)
总体上感觉21年全国乙卷的数学试卷还是偏难的。
21年的高考数学试卷,题型更抽象一些,但整体上70%都是考察基本功底,有30%的试题需要深思考一些,估计今年乙卷考生的数学成绩,整体会比去年低个5分左右。
乙卷文、理科第17题,以芯片生产中的刻蚀速率为原型,设计了概率统计的应用问题,考查了考生对于平均数、方差等知识的理解和应用,引导考生树立正确的人生观、价值观。
乙卷文、理科第16题有多组正确答案,有多种解题方案可供选择,考查了考生的空间想象能力,具有较好的选拔性。
学好数学
`1、数形结合思想方法
数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化。另一方面复杂的形体可以用简单的数量关系表示。在解应用题中常常借助线段图的直观帮助分析数量关系。
2、统计思想方法
数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法。
2010年普通高等学校招生全国统一考试(湖北卷)
数学(理工类)
本试卷共4页,三大题21小题,全卷满分150分。考试用时120分钟。
★祝考试顺利★
注意事项:
1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。并将准考证号条形码横贴在答题卡的指定位置。在用2B铅笔将答题卡上试卷类型A后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。
3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。
4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 为虚数单位,则=
A.- B.-1 C. D.1
2.已知,则=
A. B. C. D.
3.已知函数,若,则x的取值范围为
A. B.
C. D.
4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则
A. n=0 B. n=1 C. n=2 D. n 3
试卷类型:A
5.已知随机变量服从正态分布,且P(<4)=,则P(0<<2)=
A.0.6 B.0.4 C.0.3 D.0.2
6.已知定义在R上的奇函数和偶函数满足(>0,且).若,则=
A.2 B. C. D.
7.如图,用K、、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、、正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为
A.0.960 B.0.864 C.0.720 D.0.576
8.已知向量a=(x+z,3),b=(2,y-z),且a⊥?b.若x,y满足不等式,则z的取值范围为
A..[-2,2] B.[-2,3] C.[-3,2] D.[-3,3]
9.若实数a,b满足且,则称a与b互补,记,那么是a与b互补的
A.必要而不充分的条件 B.充分而不必要的条件
C.充要条件 D.即不充分也不必要的条件
10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:,其中M0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)=
A.5太贝克 B.75In2太贝克
C.150In2太贝克 D.150太贝克
二、填空题:本大题共5小题,每小题5分,共25分。请将答案填在答题卡对应题号的位置上,一题两空的题,其中答案按先后次序填写。答错位置,书写不清,模棱俩可均不给分。
11. 的展开式中含的项的系数为
12.在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 。(结果用最简分数表示)
13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。
试卷类型A
14.如图,直角坐标系所在平面为,直角坐标系(其中与轴重合)所在的平面为,。
(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;
(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。
15. 给个自上而下相连的正方形着黑色或白色。当时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如下图所示:
由此推断,当时,黑色正方形互不相连的着色方案共有 种,至少有两个黑色正方形相连的着色方案共有 种,(结果用数值表示)
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本小题满分10分)
设的内角所对的边分别为,已知
(Ⅰ)求的周长
(Ⅱ)求的值
17. (本小题满分12分)
提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流速度x 的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时)
18. (本小题满分12分)
如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.
(Ⅰ)当=1时,求证:⊥;
(Ⅱ)设二面角的大小为,求的最小值.
19.(本小题满分13分)
已知数列的前项和为,且满足:, N*,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若存在 N*,使得,,成等差数列,是判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.
20. (本小题满分14分)
平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值得关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。
21.(本小题满分14分)
(Ⅰ)已知函数,,求函数的最大值;
(Ⅱ)设…,均为正数,证明:
(1)若……,则…;
(2)若…=1,则……。