您现在的位置是: 首页 > 教育比较 教育比较
高考数学数列_高考考的数列
tamoadmin 2024-07-09 人已围观
简介1.2017年高考数学必考等差数列公式2.高中数学解数列问题有哪些常用方法3.我想知道高考数学的数列经常和哪些知识点混在一起考?或者平时的数列题目经常和哪些知识点混在一起考?4./高考中“数列”这一章一般考什么,请给我详细的总结,最好含有例题,谢谢5.求 高考数列各种主要题型6.高考数列大题求解 在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享
1.2017年高考数学必考等差数列公式
2.高中数学解数列问题有哪些常用方法
3.我想知道高考数学的数列经常和哪些知识点混在一起考?或者平时的数列题目经常和哪些知识点混在一起考?
4./高考中“数列”这一章一般考什么,请给我详细的总结,最好含有例题,谢谢
5.求 高考数列各种主要题型
6.高考数列大题求解
在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。
2022全国新高考Ⅱ卷文科数学试题及答案解析
2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。
2022高考数学大题题型 总结
一、三角函数或数列
数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。
近几年来,关于数列方面的考题题主要包含以下几个方面:
(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。
(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。
(3)应用题中的数列问题,一般是以增长率问题出现。
二、立体几何
高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。
三、统计与概率
1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.
四、解析几何(圆锥曲线)
高考解析几何剖析:
1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;
2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。
有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:
(1)、几何问题代数化。
(2)、用代数规则对代数化后的问题进行处理。
五、函数与导数
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:
1.导数的常规问题:
(1)刻画函数(比初等 方法 精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
2022高考解答题评分标准
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
1.对题意缺乏正确的理解,应做到慢审题快做题;
2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;
3.思维不严谨,不要忽视易错点;
4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :
★ 2022高考全国甲卷数学试题及答案
★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)
★ 2022年浙江高考数学试卷
★ 2022新高考2卷语文试题及答案一览
★ 2022全国高考试卷分几类
★ 2022高考数学必考知识点归纳最新
★ 2022年高考数学必考知识点总结最新
★ 2022高考文综理综各题型分数值一览
★ 2022年新高考Ⅰ卷语文题目与答案参考
★ 2022新高考Ⅱ卷选择创造未来作文12篇
2017年高考数学必考等差数列公式
1、数列中数的有序性是数列定义的灵魂,要注意辨析数列中的项与数集中元素的异同 因此在研究数列问题时既要注意函数方法的普遍性,又要注意数列方法的特殊性
2 数列{an}前n 项和Sn与通项an的关系式 an=
3 求通项常用方法
①作新数列法 作等差数列与等比数列
②累差叠加法 最基本形式是
an=(an-an-1+(an-1+an-2)+…+(a2-a1)+a1
③归纳、猜想法
4 数列前n项和常用求法
①重要公式
1+2+…+n= n(n+1)
12+22+…+n2= n(n+1)(2n+1)
13+23+…+n3=(1+2+…+n)2= n2(n+1)2
②等差数列中Sm+n=Sm+Sn+mnd,等比数列中Sm+n=Sn+qnSm=Sm+qmSn
③裂项求和 将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加时抵消中间的许多项 应掌握以下常见的裂项
④错项相消法
⑤并项求和法
数列通项与和的方法多种多样,要视具体情形选用合适方法
利用待定常数法(重点)
例1 已知数列{n }中,若1=1,且n+1=3n-4(n=1,2,3,…). 求数列的通项公式n.
分析:若关系式是n+1=3n即为等比数列,因此考虑处理-4,若能化为n+1+x=3(n+x),则可构造等比数列{n+x}。
解:设n+1=3n-4恒等变形为n+1+x=3(n+x),即n+1=3n+2x,比较系数得:x=-2
n+1-2=3(n-2)
数列{n-2}是以1-2=-1为首项,公比为3的等比数列
n-2=(-1)3n-1 即n = -3n-1+2.
说明:给出一阶递推关系式形如 (n=1,2,…),A、B为常数,均可使用待定常数法,构造等比数列求出通项。
例2 已知数列{n }中,前n项和sn = 2n-3n, 求数列的通项公式n.
分析:已知等式中不是递推关系式,利用可转化为:n -2n-1=2,考虑3n-1是变量,引入待定常数x时,可设n- x=2(n-1- x),从而可构造等比数列。
解:1=s1=21-3 则1=3,
当n2时, =(2n-3n)-(2n-1-3n-1)即n-2n-1=2 ,设其可恒等变形为:n- x=2(n-1- x),(需要注意的是上面的指数,这是某种关系而不是固定的常数,故在恒等变形时需注意两边对应的关系,而不应该用X代替x,也可以不设“-”设“+”,结果是一样的。)
即 n -2n-1=x ,比较系数得:x=2.
n- 2=2(n-1- 2 )
数列{n- 2}是以1-6=-3为首项,公比为2的等比数列。
n- 2=(-3)2n-1
n=2-3.
说明:对于型如n=An-1+f(n)(A为常数)的一阶递推关系式。可利用待定常数法,构造等比数列;但须体现新数列相邻两项的规律性,设其可恒等变形为:n- xg(n)=A[n-1- xg(n-1)],若x存在,则可构造等比数列{ n- xg(n)}。
2 利用配方法
有些递推关系式经“配方”后,可体现等差(比)的规律性。
例3 设n0,1=5,当n2时,n+n-1=+6, 求数列的通项公式n。
分析:给出的递推关系式不能反映规律性,因此考虑去分母得:2n-2n-1=7+6(n-n-1),为体现规律性,变形为:2n-2n-1-6n+6n-1=7,即(n-3)2-(n-1-3)2=7.
解:由n+n-1=+6(n2)变形为:
2n-2n-1=7+6(n-n-1) 即(n-3)2-(n-1-3)2=7 (n2)
数列{ }是以(1-3)2=4为首项,公差为7的等差数列
=4+7(n-1)=7n-3,而n0
n=+3
说明:递推关系式中含有二次项、一次项时可考虑用配方法,揭示规律,构造等差(比)数列。
3 利用因式分解
有些递推关系式经因式分解后,可体现等差(比)的规律性。
例4已知数列{n }是首项为1的正项数列,且2n+1 + 3n+1 - 22n + 3n - nn+1=0求数列的通项公式n。
分析:由已知递推关系式,若配方,则无法配成完全平方或完全平方项之和。因此考虑用因式分解化简,寻求更实质的关系。可变形为:n+1(n+1 +3)+3n - nn+1 +n(-2n)=0。
解:由已知有:n+1(n+1 +3)+3n - nn+1 +n(-2 n)=0
(n+1 + n)[(n+1 + 3)-2n]=0,而n0
n+1 + 3 -2n=0,则利用待定常数法有(n+1 - 3)-2(n -3)=0
数列{n -3}是以1-3=-2为首项,公比为2的等比数列。
n-3 =(-2)2n-1 即n = 3-2n
说明:因式分解能达到化简的目的,使递推关系式简化,凸显规律性。
5 利用倒数
有些数列的递推关系式,经取倒数变形后,显现出规律性,可构造等比(差)数列。
例7 已知x1=1,x2=2,xn+ 2=,试求xn 。
分析:由递推关系式结构特征,易联想到倒数,即有 xn+2 =,从而
=,可构造等比数列。
解:对递推关系式两边取倒数得:=
可变形为=(-)()
数列{}是以=-为首项,公比为-的等比数列
=(-)(-= (n2)
=+()+()+ … +()
= 1 + (-)+(-)2 + … +
= + (n2)
= (n2) 而当n=1时亦满足。
= (n1)
说明:递推关系式中含有相邻两项之积与相邻两项之和的关系,可考虑取倒数(或化为分式),揭示规律,构造等比(差)数列。
例8已知数列{n }中,1=7,n2时,,求数列的通项公式n
分析:已知递推关系式右边为分式,取倒数后可化为:,未能反映规律,
但若能化为的关系,则可揭示规律;结合待定常数法,可确定A值。
解:由已知: (A0)即(2A+1≠0)
令,解得:A=1
已知关系式可恒等变形为,取倒数得: (n2)。
数列{}是以=为首项,公差为的等差数列。
= +(n-1),即 (n1)
说明:①例8中的递推关系式结构特征,亦易想到取倒数,但要灵活结合待定常数法,构造新数列,凸显等差的规律性。
②引入待定常数A是为了揭示变化的一致性(规律性),若A值存在,则可反映此变化规律。若A值不存在,则考虑其它变形。
6 利用换元
有些数列的递推关系式看起来较为复杂,但应用换元和化归思想后,可构造新数列进行代换,使递推关系式简化,从而揭示等差(比)规律,求出通项。
例9已知数列{an }中, 求(1981年第22届IMO预选题)。
分析:已知递推关系式中的较难处理,考虑用换元去掉根式,即令(0)。
解:令,则=5, 0,从而=
由已知递推关系式有:
化简得:=()2
2=, 由待定常数法得:2(-3)= -3
数列{-3}是以-3=2为首项,公比为的等比数列。
-3=2()n-1 即 = + 3
== (n1)
说明:对于递推关系式中较难处理的根式(比如不能反映相邻项的规律性),可采用换元去掉根式,化简递推关系式,揭示相邻项的变化规律,构造等比(差)数列。
例10 设=1,=(nN),求证:(1990年匈牙利奥林匹克试题)。
分析:比较已知与结论,应先求通项公式。待证的不等式中含有,且已知递推关系式中含有,据此两个信息,考虑进行三角代换,化简递推关系式。
证明:由已知0,引入数列{}使=tan,(0,)
由已知有:=
即=,又=1,,从而
即数列{}是以为首项,公比为的等比数列
= = , 而当x(0,)时,有tanxX
= tan
说明:对于递推关系式中,型如可考虑采用三角代换,化简递推关系式,揭示规律性。
总之,构造等比(差)数列关键在于抓住递推关系式的结构特征,选择恰当方法进行恒等变形,往往能揭示等比(差)规律,顺利求出通项。
参考文献:
⑴ 罗增儒. 递推数列.?0?0高考到竞赛?0?3(数学),陕西师范大学出版社,2002,7。
⑵ 陈传理、刘诗雄. 递推数列.?0?0高中数学竞赛名师讲座?0?3,华中师范大学出版社,1993,4。
⑶ 秦永. 递推数列.中学数学教学参考(陕西师范大学),2003(4)。
⑷ 樊友年.构造法解数列综合题. 中学数学教学参考,2002(7)。
高中数学解数列问题有哪些常用方法
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。
高中数学知识点:等差数列公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)?公差
前n项的和Sn=首项?n+项数(项数-1)公差/2
公差d=(an-a1)?(n-1)
项数=(末项-首项)?公差+1
数列为奇数项时,前n项的和=中间项?项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差?项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n?2
即(首项+末项)?项数?2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
高中数学知识点:推理过程
设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:
当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)
基本公式
公式 Sn=(a1+an)n/2
等差数列求和公式
Sn=na1+n(n-1)d/2; (d为公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公差d
项数n
表示方法
等差数列基本公式:
末项=首项+(项数-1)?公差
项数=(末项-首项)?公差+1
首项=末项-(项数-1)?公差
和=(首项+末项)?项数?2
差:首项+项数?(项数-1)?公差?2
说明
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和
本段通项公式
首项=2?和?项数-末项
末项=2?和?项数-首项
末项=首项+(项数-1)?公差:a1+(n-1)d
项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1
公差= d=(an-a1)/n-1
如:1+3+5+7+?99 公差就是3-1
将a1推广到am,则为:
d=(an-am)/n-m
基本性质
若 m、n、p、q?N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq(等差中项)
我想知道高考数学的数列经常和哪些知识点混在一起考?或者平时的数列题目经常和哪些知识点混在一起考?
数列问题解题方法技巧
1.判断和证明数列是等差(等比)数列常有三种方法:
(1)定义法:对于n≥2的任意自然数,验证 为同一常数。
(2)通项公式法:
①若 = +(n-1)d= +(n-k)d ,则 为等差数列;
②若 ,则 为等比数列。
(3)中项公式法:验证中项公式成立。
2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、数列问题解题注意事项
1.证明数列 是等差或等比数列常用定义,即通过证明 或 而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意 与 之间关系的转化。如:
= , = .
4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.
5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.原文链接: style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">/高考中“数列”这一章一般考什么,请给我详细的总结,最好含有例题,谢谢
通过广东高考卷07---10四年情况来看,数列部分大题目(10年没有大题目)都是以函数或一元二次方程为载体,(通常都在最后一题)主要考点是以求构造法求递推数列通项公式,数列不等式证明(归纳法,放缩法),数列求和三类为主。小题目主要在选择题上通常是等差等比数列基本性质予以考察。
求 高考数列各种主要题型
数列在整个高中数学中处于知识和方法的汇合点,在这个单元中显性知识包括三个概念、两种公式和一种关系(an和Sn的关系),隐性方面包括五种基本方法(观察归纳、类比联想、倒序相加、错位相减、裂项求和)和五种重要的数学思想(函数思想、方程思想、分类讨论的思想、转化的思想和数形结合的思想).纵观教材,概念和公式是核心,思维是支柱,运算是主体,应用是归宿,等差、等比数列的概念和性质及公式的应用成为复习的重点.
数列这个单元的复习应注意三个方面:①重视函数与数列的联系及方程思想在数列中的应用;②重视等差数列、等比数列的基础以及可化为等差、等比数列的简单问题,同时应重视等差、等比数列性质的灵活运用;③设计一些新颖题目,尤其是探索性问题,挖掘学生的潜能,培养学生的创新意识和创新精神.由于数列综合题涉及的问题背景材料新颖,解法灵活多样,建议在复习这部分内容时,启发学生多角度思考问题,培养学生思维的广阔性,养成良好的思维品质.
高考大纲对数列要求
近几年高考数学考试大纲没有变化,特别是 04、05、06要求都是一样的,对于《数列》一章的考试内容及考试要求为:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; (2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题; (3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.”
高考数列大题求解
求数列通项公式的常规思想方法列举(配典型例题)
数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。
一. 观察法
例1:根据数列的前4项,写出它的一个通项公式:
(1)9,99,999,9999,…
(2)
(3)
(4)
解:(1)变形为:101-1,102―1,103―1,104―1,……
∴通项公式为:
(2) (3) (4) .
观察各项的特点,关键是找出各项与项数n的关系。
二、定义法
例2: 已知数列{an}是公差为d的等差数列,数列{bn}是公比为q的(q∈R且q≠1)的等比数列,若函数f (x) = (x-1)2,且a1 = f (d-1),a3 = f (d+1),b1 = f (q+1),b3 = f (q-1),
(1)求数列{ a n }和{ b n }的通项公式;
解:(1)∵a 1=f (d-1) = (d-2)2,a 3 = f (d+1)= d 2,
∴a3-a1=d2-(d-2)2=2d,
∴d=2,∴an=a1+(n-1)d = 2(n-1);又b1= f (q+1)= q2,b3 =f (q-1)=(q-2)2,
∴ =q2,由q∈R,且q≠1,得q=-2,
∴bn=b?qn-1=4?(-2)n-1
当已知数列为等差或等比数列时,可直接利用等差或等比数列的通项公式,只需求得首项及公差公比。
三、 叠加法
例3:已知数列6,9,14,21,30,…求此数列的一个通项。
解 易知
∵
……
各式相加得 ∴
一般地,对于型如 类的通项公式,只要 能进行求和,则宜采用此方法求解。
四、叠乘法
例4:在数列{ }中, =1, (n+1)? =n? ,求 的表达式。
解:由(n+1)? =n? 得 ,
= … = 所以
一般地,对于型如 = (n)? 类的通项公式,当 的值可以求得时,宜采用此方法。
五、公式法
若已知数列的前 项和 与 的关系,求数列 的通项 可用公式
求解。
例5:已知下列两数列 的前n项和sn的公式,求 的通项公式。
(1) 。 (2)
解: (1)
= = =3
此时, 。∴ =3 为所求数列的通项公式。
(2) ,当 时
由于 不适合于此等式 。 ∴
注意要先分n=1和 两种情况分别进行运算,然后验证能否统一。
例6. 设数列 的首项为a1=1,前n项和Sn满足关系
求证:数列 是等比数列。
解析:因为
所以
所以,数列 是等比数列。
六、阶差法
例7.已知数列 的前 项和 与 的关系是
,其中b是与n无关的常数,且 。
求出用n和b表示的an的关系式。
解析:首先由公式: 得:
利用阶差法要注意:递推公式中某一项的下标与其系数的指数的关系,即
其和为 。
七、待定系数法
例8:设数列 的各项是一个等差数列与一个等比数列对应项的和,若c1=2,c2=4,c3=7,c4=12,求通项公式cn
解:设
点评:用待定系数法解题时,常先假定通项公式或前n项和公式为某一多项式,一般地,若数列 为等差数列:则 , (b、c为常数),若数列 为等比数列,则 , 。
八、 辅助数列法
有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。
例9.在数列 中, , , ,求 。
解析:在 两边减去 ,得
∴ 是以 为首项,以 为公比的等比数列,
∴ ,由累加法得
=
= … = =
=
例10.(2003年全国高考题)设 为常数,且 ( ),
证明:对任意n≥1,
证明:设,
用 代入可得
∴ 是公比为 ,首项为 的等比数列,
∴ ( ),
即:
型如an+1=pan+f(n) (p为常数且p≠0, p≠1)可用转化为等比数列等.
(1)f(n)= q (q为常数),可转化为an+1+k=p(an+k),得{ an+k }是以a1+k为首项,p为公比的等比数列。
例11:已知数 的递推关系为 ,且 求通项 。
解:∵ ∴
令
则辅助数列 是公比为2的等比数列
∴ 即 ∴
例12: 已知数列{ }中 且 ( ),,求数列的通项公式。
解:∵
∴ , 设 ,则
故{ }是以 为首项,1为公差的等差数列
∴ ∴
例13.(07全国卷Ⅱ理21)设数列 的首项 .
(1)求 的通项公式;
解:(1)由
整理得 .
又 ,所以 是首项为 ,公比为 的等比数列,得
注:一般地,对递推关系式an+1=pan+q (p、q为常数且,p≠0,p≠1)可等价地改写成
则{ }成等比数列,实际上,这里的 是特征方程x=px+q的根。
(2) f(n)为等比数列,如f(n)= qn (q为常数) ,两边同除以qn,得 ,令bn= ,可转化为bn+1=pbn+q的形式。
例14.已知数列{an}中,a1= , an+1= an+( )n+1,求an的通项公式。
解:an+1= an+( )n+1 乘以2n+1 得 2n+1an+1= (2nan)+1 令bn=2nan 则 bn+1= bn+1
易得 bn= 即 2nan=
∴ an=
(3) f(n)为等差数列
例15.已知已知数列{an}中,a1=1,an+1+an=3+2 n,求an的通项公式。
解:∵ an+1+an=3+2 n,an+2+an+1=3+2(n+1),两式相减得an+2-an=2
因此得,a2n+1=1+2(n-1), a2n=4+2(n-1), ∴ an= 。
注:一般地,这类数列是递推数列的重点与难点内容,要理解掌握。
(4) f(n)为非等差数列,非等比数列
例16.(07天津卷理)在数列 中, ,其中 .
(Ⅰ)求数列 的通项公式;
解:由 , ,
可得 ,
所以 为等差数列,其公差为1,首项为0,故 ,所以数列 的通项公式为 .
这种方法类似于换元法, 主要用于已知递推关系式求通项公式。
九、归纳、猜想
如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
例17.(2002年北京春季高考)已知点的序列 ,其中 , , 是线段 的中点, 是线段 的中点,…, 是线段 的中点,…
(1) 写出 与 之间的关系式( )。
(2) 设 ,计算 ,由此推测 的通项公式,并加以证明。
(3) 略
解析:(1)∵ 是线段 的中点, ∴
(2) ,
= ,
= ,
猜想 ,下面用数学归纳法证明
当n=1时, 显然成立;
假设n=k时命题成立,即
则n=k+1时, =
=
∴ 当n=k+1时命题也成立,∴ 命题对任意 都成立。
例18:在数列{ }中, ,则 的表达式为 。
分析:因为 ,所以得: ,
猜想: 。
十、倒数法
数列有形如 的关系,可在等式两边同乘以 先求出
例19.设数列 满足 求
解:原条件变形为 两边同乘以 得 .
∵
∴
综而言之,等差、等比数列是两类最基本的数列,是数列部分的重点,自然也是高考考查的热点,而考查的目的在于测试灵活运用知识的能力,这个“灵活”往往集中在“转化”的水平上;以上介绍的仅是常见可求通项基本方法,同学们应该在学习不断的探索才能灵活的应用.只要大家认真的分析求通项公式并不困难.
⑴ a(n+1)=(1+1/n)an+(n+1)/2^n
a(n+1)=[(n+1)/n]an+(n+1)/2^n
两边同除(n+1)得:a(n+1)/(n+1)=an/n+1/2^n
b1=a1/1=1
b(n+1)-bn=1/2^n
n>=2时
b2-b1=1/2
b3-b2=1/2^2
……
bn-b(n-1)=1/2^(n-1)
把以上n-1个等式相加:bn-b1=bn-1=1/2+1/2^2+…+1/2^(n-1)=1-1/2^(n-1)
bn=2-1/2^(n-1),b1=1也适合此式。
所以,数列{bn}的通项公式为:bn=2-1/2^(n-1),(n为正整数)
⑵
bn=an/n=2-1/2^(n-1)
an=2n-n/2^(n-1)
Sn=2-1/2^0+4-2/2+6-3/2^2+…+2n-n/2^(n-1)
=(2+4+6+…+2n)-[1/2^0+2/2+3/2^3+…+n/2^(n-1)]
=n(n+1)-[1/2^0+2/2+3/2^3+…+n/2^(n-1)]
设Tn=1/2^0+2/2+3/2^3+…+n/2^(n-1) (1)
(1/2)*(1)得:(1/2)Tn=1/2+2/2^2+3/2^3+…+n/2^n (2)
(1)-(2)得:
(1/2)Tn=1+1/2+1/2^2+1/2^3+…+1/2^(n-1)-n/2^n=2-1/2^(n-1)-n/2^n
Tn=4-1/2^(n-2)-2n/2^(n-2)=4-(2n+1)/2^(n-2)
Sn=n(n+1)-Tn=n(n+1)+(2n+1)/2^(n-2)-4,n为正整数。
注:”∧n“指”n次方“
希望回答对你有帮助。