您现在的位置是: 首页 > 教育比较 教育比较
2013年高考数学试题解析,2013年高考数学试题
tamoadmin 2024-05-16 人已围观
简介2018年山西高考数学试卷试题及答案解析(答案WORD版) 2013试题结构稳定,知识覆盖全面,突出重点 我们山西用的是全国新课标卷Ⅰ卷,用同一份试题的还有河南、新疆、宁夏、吉林、黑龙江、云南、河北、内蒙古。2012年河南第一年加入到新课标卷,在一定程度上加大了高考考题的难度,2013年及今后将不可能再像2011年那样简单了,不过虽然考题难易程度有区别,但知识点和方法能力等的考查是没有
2018年山西高考数学试卷试题及答案解析(答案WORD版)
2013试题结构稳定,知识覆盖全面,突出重点
我们山西用的是全国新课标卷Ⅰ卷,用同一份试题的还有河南、新疆、宁夏、吉林、黑龙江、云南、河北、内蒙古。2012年河南第一年加入到新课标卷,在一定程度上加大了高考考题的难度,2013年及今后将不可能再像2011年那样简单了,不过虽然考题难易程度有区别,但知识点和方法能力等的考查是没有区别的,关键在于平时的学习中理解每一个知识点的核心概念,夯实基础知识,提高综合解决问题的能力。以理科卷为例,2013年高考数学试题整体试题结构稳定,知识覆盖面广,突出重点注重对概念本质的考察,深化能力立意,突出思维能力和创新意识的考查,强化思想,突出对考生的能力和数学素养的考查。
试卷紧扣新课程标准的考试说明,基础知识考察全面。选择题没有偏难险怪,全都是立足考察学生的基础知识,当然11,12题稍难一些,12题有较高的综合度和能力要求。解答题仍然考察五个重点类型:解三角形、立体几何、概率统计分布列、解析几何、导数。
2013年考题从宏观上来讲命题结构与2012年类似,题型、题量、分值、难度、知识分布与覆盖上保持相对稳定。函数知识所占分数约为22分,立体几何约为22分,解析几何约为22分,数理统计、概率、二项式定理约为22分,三角函数约为17分,数列约为10分,集合、复数、程序框图、平面向量分别占5分,选修占10分。试题结构与平时太原第一次第二次模拟考试,山西省适应性考试训练相差不多,同学们面对这样的试题应该不会有陌生的'感觉。
二、难度与去年相比没有明显的变化,但在形式上更加灵活
今年试题重点考查考生对基本概念、基本原理和基本方法的理解、掌握的程度;考查考生的数学思维能力及对数学本质的认识水平;考查考生提炼相关数量关系,整理、分析和处理数据,解决简单实际问题的能力。本次试题所涉及的知识内容几乎覆盖了高中所学知识的全部重要内容,充分体现了“重点知识重点考查”的原则,难度与去年相比没有明显的变化,但在形式上更加灵活。
集合、复数、算法与程序框图、概率、二项式定理等问题的考查难易程度甚至题的位置与去年几乎没有区别。
数列较去年相比难度有所降低,题型一样一道选择一道填空,三角函数考查一道小题一道大题,小题考查三角函数的有关基本公式的灵活应用,大题是常规的解三角形问题,主要考查正、余弦定理的应用但涉及的三角形较多,学生不易解答。函数的考查在第11,15,16,21题,15题考查的就是对某个函数取最大值时的条件的应用意识。但是,如果我们平时的教学中,不注意对数学本质的深刻理解,而过多地进行重复格式训练的时候,学生们很容易手足无措,21题依然是传统的导数综合问题。16题考查的是“对称”概念的应用意识。而如果我们平时训练把“对称”训练成了几个关系式的理解,那这道题就会出现方向的偏离。
立体几何,考题中这一模块主要考查三视图、几何体与球关系及立体几何大题的常规考法,与去年相比变化不大,大题第一问考查证明,去年和今年都是异面直线垂直,第二问今年是线面角的计算,让求正弦值,对大多数理科生而言,二面角的计算习惯于利用建系的方法解决,本次试题建系也是可以的,只不过需要先证明两两垂直关系,从而可以找到X轴,Y轴,Z轴,建系时要符合右手系,然后进行有关的计算。
解析几何与去年比较难度有所增加,小题在第4题,第10题,第20题来考查,小题考查了椭圆和双曲线的基本知识,解答题是对圆与圆锥曲线的综合考查,比较复杂,运算量也较大,第一问考查轨迹方程的确定,第二问属于圆锥曲线有关相切的综合问题。
数理统计主要考查对数据的处理能力,沿袭了去年侧重应用和实际密切联系的考查方式,但考查到了我们不太容易关注的条件概率问题,值得回味。
今年的高考数学理科试卷的选择题填空题入手平易,都有通法。比如10题直接简单的考察“中点弦”模型,14题直接简单地考察数列的关系,但同时又突出以能力立意。比如11题,根据图像入手求解并不难,但通过图形的特点与选项特点的结合,很容易得出正确答案,既准确又省事。很多题都有一定的运算能力,量还不小,考题虽然面较广但与去年相比还是窄了一些,比如我们常练的简易逻辑,线性规划,排列组合,统计中回归分析,独立性检验等都未涉及到。
另外王双兵就答题技巧、策略、心理提出几点建议:1、答题技巧:核心思想是“根据评分标准,尽量争取得分”。2、答题策略:不跳步,不省略,写出详实的步骤,不追求一步到位。计算题,要写出核心的步骤,比如条件、代换等,不必要把详实的计算过程、化简过程逐一写出。应用题,引入变量要设,关键条件要列,在解的基础上要作答。3、答题心理:答题要本着尽量得分的策略进行,要调整心态,在会做的题目上舍得花时间。当然不是拖延浪费。
近日,2013年普通高等学校招生全国统一考试大纲(新课标版)新鲜出炉。《考试大纲》是高考命题的主要依据,从试卷结构、考试内容及要求等方面,具体规范了高考试题的要求。下面是中国教育在线为大家整理的黑龙江高考数学学科高考说明,分别对该学科2013年高考呈现出来的特点进行解读,并根据命题方向给出备考建议。
数学
训练五大能力
培养两种意识
解读:哈师大附中高三数学备课组组长张治宇
2013年全国新课标版高考《考试大纲》数学学科与2012年考试大纲相比,没有任何变化。今年数学高考试题的命制将按照“考查基础知识的同时,注重考查能力”的原则,将知识、能力和素质融为一体,全面检测考生的数学素养。在能力要求上,着重对考生的五种能力和两种意识进行考查。
五种能力
空间想象能力:立体几何中有关三视图的问题注重考查学生对空间形式的观察、分析、抽象的能力。从这几年高考试题来看,三视图问题几乎年年出现,并且难度上也有逐年递增的趋势。
抽象概括能力:抽象是要舍弃事物的非本质属性,揭示其本质属性;概括是把仅仅属于某一类对象的共同属性区分出来的思维过程。很多高考试题,特别是考生觉得比较困难的问题,往往是因为没有把题目中所给出的文字语言进行抽象概括转化为相应的数学问题,所以对考生的思维造成一定困难。
推理论证能力:对于圆锥曲线和导数的压轴大题、证明定点定值或者求取值范围的问题,如果能够提高推理和论证的能力,可能会猜出结果,从而为证明问题提供准确的方向。
运算求解能力:这里的运算能力不仅指根据公式法则进行正确运算,还要求考生掌握一定的运算技巧。例如,解析几何中如果能利用好韦达定理,强调整体运用的意识,往往能简化运算。在实际解决问题过程中如果遇到障碍应该学会及时调整。例如,在导数解答题中对代数式合理变型会收到很好的效果。
数据处理能力:这种能力主要体现在统计案例中,近几年高考试题中对统计概率问题的考查比较注重联系实际,考生要学会收集、整理、分析数据,从中抽取对研究问题有用的信息。
两种意识
应用意识:考生应学会从实际生活中抽象出数学问题,通过解决数学问题来解决实际问题。
创新意识:从2012年高考数学试题来看,试题比较灵活,这种灵活,很大程度上是源于创新,很多题目所考的知识点考生生都很清楚,可是形式上一旦新颖了,考生做题的难度就加大了。考生备考时面对一些新信息问题应好好研究。
另外,考生应仔细阅读考纲,明确哪些公式是需要记忆的,哪些是不要求记忆只要求应用的,例如球、棱柱、棱锥、台的表面积和体积公式就是需要了解的;对于积化和差、和差化积、半角公式不要求记忆,但要求能够利用和与差的三角函数公式进行推导;线性回归方程的系数公式只要求能根据给出的公式进行求解即可。另外,大纲明确提出要了解在圆锥中截取圆锥曲线的相关定理,考生应予以关注。