您现在的位置是: 首页 > 教育比较 教育比较

高考三卷文数学答案_三卷高考题数学

tamoadmin 2024-07-19 人已围观

简介1.求文档: 2004全国高考数学立体几何题2.2022江西赣州一模高三各科试卷及答案解析汇总(已更新)3.2019年广西高考数学试卷试题及答案解析(答案WORD版)4.2010年安徽文科数学高考卷答案及详解(手机能看的)5.2022年浙江高考卷答案及试题完整版(答案更新中)上海 数学试卷(文史类)考生注意:1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码

1.求文档: 2004全国高考数学立体几何题

2.2022江西赣州一模高三各科试卷及答案解析汇总(已更新)

3.2019年广西高考数学试卷试题及答案解析(答案WORD版)

4.2010年安徽文科数学高考卷答案及详解(手机能看的)

5.2022年浙江高考卷答案及试题完整版(答案更新中)

高考三卷文数学答案_三卷高考题数学

上海 数学试卷(文史类)

考生注意:

1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。

2. 本试卷共有23道试题,满分150分,考试时间120分钟。

一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。

1.函数f(x)=x3+1的反函数f-1(x)=_____________.

2.已知集体A={x|x≤1},B={x|≥a},且A∪B=R,

则实数a的取值范围是__________________.

3. 若行列式 中,元素4的代数余子式大于0,则x满足的条件是__________________.

4.某算法的程序框如右图所示,则输出量y与输入量x满足的关系式是________________.

5.如图,若正四棱柱ABCD—A1B1C1D1的底面边长为2,

高为4,则异面直线BD1与AD所成角的大小是___________________

(结果用反三角函数值表示).

6.若球O1、O2表示面积之比 ,则它们的半径之比 =_____________.

7.已知实数x、y满足 则目标函数z=x-2y的最小值是___________.

8.若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是 。

9.过点A(1,0)作倾斜角为 的直线,与抛物线 交于 两点,则 = 。

10.函数 的最小值是 。

11.若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是 (结果用最简分数表示)。

12.已知 是椭圆 的两个焦点, 为椭圆 上的一点,且 。若 的面积为9,则 .

13.已知函数 。项数为27的等差数列 满足 且公差 ,若 ,则当k= 时, 。

14.某地街道呈现东——西、南——北向的网络状,相邻街距都为1,两街道相交的点称为格点。若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)为报刊零售店,请确定一个格点 为发行站,使5个零售点沿街道发行站之间路程的和最短。

二。、选择题(本大题满分16分)本大题共有4题,每题有且只有一个正确答案,考生应在答案纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分。

15.已知直线 平行,则K得值是( )

(A) 1或3 (B)1或5 (C)3或5 (D)1或2

16,如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是( )

17.点P(4,-2)与圆 上任一点连续的中点轨迹方程是 [答]( )

(A) (B)

(C) (D)

18.在发生某公共卫生期间,有专业机构认为该在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”. 根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 [答]( )

(A)甲地:总体均为3,中位数为4 . (B)乙地:总体均值为1,总体方差大于0 .

(C)丙地:中位数为2,众数为3 . (D)丁地:总体均值为2,总体方差为3 .

三.解答题(本大题满分78分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 .

19.(本题满分14分)

已知复数 (a、b )(I是虚数单位)是方程 的根 . 复数 ( )满足 ,求 u 的取值范围

20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 .

已知ΔABC的角A、B、C所对的边分别是a、b、c,设向量 ,

若 // ,求证:ΔABC为等腰三角形;

(1) 若 ⊥ ,边长c = 2,角C = ,求ΔABC的面积

21.(本题满分16分)本题共有2个小题,第1小题满分6分,第2小题满分10分 .有时可用函数

描述学习某学科知识的掌握程度.其中 表示某学科知识的学习次数( ), 表示对该学科知识的掌握程度,正实数a与学科知识有关

(1)证明:当x 7时,掌握程度的增长量f(x+1)- f(x)总是下降;

(2)根据经验,学科甲、乙、丙对应的a的取值区间分别为(115,121〕,(121,127〕,

(127,133〕.当学习某学科知识6次时,掌握程度是85%,请确定相应的学科.

22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.

已知双曲线C的中心是原点,右焦点为F ,一条渐近线m: ,设过点A 的直线l的方向向量 。

(1) 求双曲线C的方程;

(2) 若过原点的直线 ,且a与l的距离为 ,求K的值;

(3) 证明:当 时,在双曲线C的右支上不存在点Q,使之到直线l的距离为 .

23.(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.

已知 是公差为d的等差数列, 是公比为q的等比数列

(1)若 ,是否存在 ,有 ?请说明理由;

(2)若 (a、q为常数,且aq 0)对任意m存在k,有 ,试求a、q满足的充要条件;

(3)若 试确定所有的p,使数列 中存在某个连续p项的和式数列中 的一项,请证明.

上海 (数学文)参考答案

一、 填空题

1. 2.ɑ≤1 3. 4.

5 6.2 7.-9 8.

9. 10. 11. 12.3

13.14 14(3,3)

二、选择题

题号 15 16 17 18

代号 C B A D

三、 解答题

19.解:原方程的根为

20题。证明:(1)

即 ,其中R是三角形ABC外接圆半径,

为等腰三角形

解(2)由题意可知

由余弦定理可知,

21题。证明(1)当 时,

而当 时,函数 单调递增,且

故函数 单调递减

当 时,掌握程度的增长量 总是下降

(2)有题意可知

整理得

解得 …….13分

由此可知,该学科是乙学科……………..14分

22.解(1)设双曲线 的方程为

,解额 双曲线 的方程为

(2)直线 ,直线

由题意,得 ,解得

(3)证法一设过原点且平行于 的直线

则直线 与 的距离 当 时,

又双曲线 的渐近线为

双曲线 的右支在直线 的右下方,

双曲线 右支上的任意点到直线 的距离大于 。

故在双曲线 的右支上不存在点 ,使之到直线 的距离为

证法二设双曲线 右支上存在点 到直线 的距离为 ,

由(1)得

设 ,

当 时, ;

将 代入(2)得

方程 不存在正根,即设不成立,

故在双曲线 的右支上不存在点 ,使之到直线 的距离为

23.解(1)由 得 ,

整理后,可得

、 , 为整数

不存在 、 ,使等式成立。

(2)当 时,则

即 ,其中 是大于等于 的整数

反之当 时,其中 是大于等于 的整数,则 ,

显然 ,其中

、 满足的充要条件是 ,其中 是大于等于 的整数

(3)设

当 为偶数时, 式左边为偶数,右边为奇数,

当 为偶数时, 式不成立。

由 式得 ,整理得

当 时,符合题意。

当 , 为奇数时,

由 ,得

当 为奇数时,此时,一定有 和 使上式一定成立。

当 为奇数时,命题都成立。

十分抱歉,图不会发,你能否告诉我!

求文档: 2004全国高考数学立体几何题

2018年海南高考数学试卷试题及答案解析(答案WORD版)

2015年海南高考数学科目的考试结束,很多同学都反映难度在中等偏上。专业的数学老师怎么评价这份高考试题?南海网记者专访了海南华侨中学特级教师、正高级教师、省突出贡献优秀专家李红庆老师,以及海南华侨中学数学教师、省骨干教师史利红老师,请他们对数学卷试题特点、难易程度进行专业点评。

老师给这次高考数学的试题做出了总体评价:遵循考纲与说明要求,注意设计创新题型,考查学生数学素养,注重能力立意,突出考查考生的五个能力与两个意识,并注重体现数学的学科价值和思辩价值。试题与往年相比在结构与难度上均保持稳定并略有下降,体现了较好的信度、效度,适当的灵活度和较强的区分度。尽管感觉比往年难度有所下降,但题目设计新颖,如空间几何;命题也没有落下套路,如文、理第17题仍然考查解三角形,而没有考查数列。

老师们认为,本次数学考试的文理科试题都比较有新意,考察了学生的能力和逻辑思维,主要有以下四个特点:

一、注意设计创新题型考查学生数学素养

数学试题选取素材合理,设计创新题目的情境,能灵活、综合地考查基础知识,充分体现了对基础内容考查的.全面性、综合性和基础性。如文科第11题设计考查余弦定理,文、理第19题立体几何考查考生的空间想象能力和勾股定理的逆定理的应用;还有理科第17题考查设计未知数和内角平分线成比例定理,问题本身不难但学生想不到就会产生害怕心理,文科第12题考查两曲线的切线问题。

二、以能力立意为主轴突出考查逻辑思维

2015年数学试题坚持多视角、多层次以能力立意考查学生的思维能力、运算能力、空间想象能力、实践能力、图表数据处理能力和创新意识、应用意识,特别注意到对“五个能力”和“两个意识”的内涵的重新界定的考查。

数学既是一门工具性的基础学科也是一门思维的科学,逻辑思维能力是数学能力的核心,一定思维量考查考生的思维能力;试题体现了文、理思维强度的高低差异性,如应用导数研究函数性质的第21题,文科侧重于对已知条件进行比较、分析、综合、抽象与概括,给定条件下求参量的取值范围。理科试题更侧重于能用演绎、归纳和类比方法进行推理,命题设计以抽象思维与逻辑思维为主。

三、关注应用两个维度体现工具性应用性

数学应用意识有两个维度:其一是实际应用,试题的选择题与解答题都注意到,如文科中第18题,理科中第18题;其二是数学知识内部应用,如文、理科中第21题,就是应用导数研究函数的性质,理科第19题立体几何解答题的第Ⅱ问,就是应用向量知识解决空间的直线、平面的位置关系。数学源于生活实践,它也是解决实际问题的有力工具,实际应用能力是考生必须具备的数学素养。今年理科第18题选择以两组数据为背景的实际应用问题,体现了数学学科的工具性与应用性,也体现了高考改革中加强应用性的特点,这些试题接地气,贴近现实,充满了数学中生活,生活中有数学的应用气息。

四、突出重点兼顾全面注意数学思想方法

数学试题考点覆盖全面,兼顾对高中基础知识与基本技能的全面考查,特别对教材内容的考查,如程序框图问题考查了教材中的案例更相减损术,同时突出对重点考点重点考查。今年考试大纲中增加的“数学方法”与删除了“增强应用性和能力型”的提法得到了体现,没有出现增强应用性和能力性的试题,以解析几何为背景考查了分析问题解决问题的能力,第21题考查了分类讨论与整合思想,理科第10题考查了数形结合思想。

2022江西赣州一模高三各科试卷及答案解析汇总(已更新)

1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]

已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()

A.B.C.D.

2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]

已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.

①两条平行直线②两条互相垂直的直线

③同一条直线④一条直线及其外一点

在一面结论中,正确结论的编号是(写出所有正确结论的编号).

3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()

A.75°B.60°C.45°D.30°

4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]

已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则

球心O到平面ABC的距离为()

A.B.C.D.

5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]

下面是关于四棱柱的四个命题:

①若有两个侧面垂直于底面,则该四棱柱为直四棱柱

②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱

③若四个侧面两两全等,则该四棱柱为直四棱柱

④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱

其中,真命题的编号是(写出所有正确结论的编号).

6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]

正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()

A.B.C.D.

7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]

用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.

8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]

正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()

A.B.C.D.

9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]

对于直线m、n和平面,下面命题中的真命题是()

A.如果、n是异面直线,那么

B.如果、n是异面直线,那么相交

C.如果、n共面,那么

D.如果、n共面,那么

10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]

已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平

面ABC的距离为()

A.1B.C.D.2

11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]

已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心

到平面ABC的距离为()

A.1B.C.D.2

12.(2004年北京高考·理工第3题,文史第3题)

设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,,则

②若,,,则

③若,,则

④若,,则

其中正确命题的序号是

A. ①和②B. ②和③C. ③和④D. ①和④

13.(2004年北京高考·理工第4题,文史第6题)

如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是

A. 直线B. 圆C. 双曲线D. 抛物线

14.(2004年北京高考·理工第11题,文史第12题)

某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,

表面积是______________cm2

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]

如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.

(I)求点P到平面ABCD的距离;

(II)求面APB与面CPB所成二面角的大小.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]

如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.

(Ⅰ)求证CD⊥平面BDM;

(Ⅱ)求面B1BD与面CBD所成二面角的大小.

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,

(1)求证:AB ⊥ BC;

(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.

(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]

如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P—ABCD的体积;

(Ⅱ)证明PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:

(I)三棱柱的侧面展开图的对角线长

(II)该最短路线的长及的值

(III)平面与平面ABC所成二面角(锐角)的大小

20.(2004年北京高考·理工第16题,本小题满分14分)

如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:

(I)该三棱柱的侧面展开图的对角线长

(II)PC和NC的长

(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

参考答案

1.A2.①②④3.C4.B5.②④6.C7.8.A9.C

10.A11.A12.A13.D14.

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]

本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.

(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.

∵AD⊥PB,∴AD⊥OB,

∵PA=PD,∴OA=OD,

于是OB平分AD,点E为AD的中点,所以PE⊥AD.

由此知∠PEB为面PAD与面ABCD所成二面角的平面角,

∴∠PEB=120°,∠PEO=60°

由已知可求得PE=

∴PO=PE·sin60°=,

即点P到平面ABCD的距离为.

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.

.连结.

又知由此得到:

所以

等于所求二面角的平面角,

于是

所以所求二面角的大小为.

解法二:如图,取PB的中点G,PC的中点F,连结EG、、GF,则⊥PB,FG//BC,FG=BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,

∴∠F是所求二面角的平面角.

∵AD⊥面POB,∴AD⊥EG.

又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

在Rt△PEG中,EG=PE·cos60°=.

在Rt△PEG中,EG=AD=1.

于是tan∠GAE==,

又∠F=π-∠GAE.

所以所求二面角的大小为π-arctan.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]

本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.

满分12分.

解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=

∵CB=CA1=,∴△CBA1为等腰三角形,

又知D为其底边A1B的中点,

∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=

又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,

∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.

∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.

因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.

∴FG=,FG⊥BD.

由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,

所以△BB1D是边长为1的正三角形.

于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,

又 B1F2=B1B2+BF2=1+(=,

即所求二面角的大小为

解法二:如图,以C为原点建立坐标系.

(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),

D(,M(,1,0),

则∴CD⊥A1B,CD⊥DM.

因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设BD中点为G,连结B1G,则

G(),、、),

所以所求的二面角等于

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]

本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.

(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.

因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,

所以PD⊥面ABC,D为垂足.

因为PA=PB=PC,所以DA=DB=DC,

可知AC为△ABC的外接圆直径,因此AB⊥BC.

(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.

因为△PBC≌△PBA,所以AF⊥PB,AF=CF.

因此,PB⊥平面AFC,

所以面AFC⊥面PBC,交线是CF,

因此直线AC在平面PBC内的射影为直线CF,

∠ACF为AC与平面PBC所成的角.

在Rt△ABC中,AB=BC=2,所以BD=

在Rt△PDC中,DC=

在Rt△PDB中,

在Rt△FDC中,所以∠ACF=30°.

即AC与平面PBC所成角为30°.

(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.

又面PAC⊥面ABC,

所以BD⊥平面PAC,D为垂足.

作BE⊥PC于E,连结DE,

因为DE为BE在平面PAC内的射影,

所以DE⊥PC,∠BED为所求二面角的平面角.

在Rt△ABC中,AB=BC=,所以BD=.

在Rt△PDC中,PC=3,DC=,PD=,

所以

因此,在Rt△BDE中,,

所以侧面PBC与侧面PAC所成的二面角为60°.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]

本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析

问题能力.满分12分

解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P—ABCD的体积

VP—ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为所以PA⊥BD.

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,

又知AD=4,AB=8,

所以Rt△AEO∽Rt△BAD.

得∠EAO=∠ABD.

所以∠EAO+∠ADF=90°

所以AF⊥BD.

因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形

其对角线长为

(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为

(III)连接DB,,则DB就是平面与平面ABC的交线

在中

由三垂线定理得

就是平面与平面ABC所成二面角的平面角(锐角)

侧面是正方形

故平面与平面ABC所成的二面角(锐角)为

20.(2004年北京高考·理工第16题)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为

(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线

设,则,在中,由勾股定理得

求得

(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,

就是平面NMP与平面ABC所成二面角的平面角(锐角)

在中,

在中,

故平面NMP与平面ABC所成二面角(锐角)的大小为

2019年广西高考数学试卷试题及答案解析(答案WORD版)

2022高考在即,各地的高三模拟考试也在陆续进行,模考是高考前的重要考试,能帮助考生查漏补缺其中,2022赣州一模将在3月19日开考,本文整理了一下2022江西赣州一模高三各科试卷及答案解析汇总。

一、2022赣州一模语文试卷及答案

语文试卷

语文答案

待更新

二、2022赣州一模数学试卷及答案

文科数学试卷

文科数学答案

理科数学试卷

理科数学答案

三、2022赣州一模英语试卷及答案

英语试卷

英语答案

四、2022赣州一模文综试卷及答案

文综试卷

文综答案

五、2022赣州一模理综试卷及答案

理综试卷

理综答案

2010年安徽文科数学高考卷答案及详解(手机能看的)

高考完成了数学科目的考试,考试结束教育部考试中心的数学命题专家就对今年的数学试题进行了分析。

 总的说来,在贯彻落实《院关于深化考试招生制度改革的实施意见》的开局之年,高考数学重在增强基础性、综合性,着重考查学生独立思考和运用所学知识分析问题、解决问题的能力。数学试卷符合考试大纲和课程标准的各项要求,重视数学基础,注重能力立意,体现课改理念,富有时代特征。试题稳中有新,坚持多角度、多层次地考查考生的逻辑思维、运算求解、空间想象以及数据处理等能力,突出对逻辑推理、创新应用意识与中国优秀传统文化的考查,体现了数学的基础性和工具性作用。

 特点一:创新试题设计,深入考查逻辑推理能力

 数学所考查的逻辑思维、推理方法和分析能力体现了数学作为基础学科的作用,这些在个人的发展过程和认知结构的建构过程中都是必不可少的。通过加强对逻辑推理能力的考查,可以促使学生学习理性思维的方法,养成实事求是、求真务实的思想意识,使他们在今后的生活和工作中形成科学的人生态度。

 试卷充分利用学科特点,创新试题设计,深入考查逻辑推理能力。取的主要措施有:一是设问方式创新,例如全国二卷第19题要求考生画出交线围成的正方形,不必说明画法和理由,鼓励考生动手试验,进行创新尝试;二是试题的解决方案创新,例如全国一卷理科第16题引导考生将解三角形的原理推广运用到四边形中,要求考生打破常规思路,独立思考,积极探究;三是试题素材创新,例如北京卷文科第14题突出对图形、图表语言运用的考查,需要考生从题设图表中获取并处理相关信息进行逻辑推理。试题不落俗套,考查了考生逻辑思维的系统性。四是试题情境创新,例如浙江卷文科第7题将立体几何与平面几何知识有机结合,考查考生空间想象能力和推理论证能力,对考生逻辑思维的灵活性有较高要求。

 特点二:突出实践能力考查,增强创新应用意识

 数学源于生活与实践,数学知识是解决实际问题的有力工具,数学也是培养理性思维的重要学科,对创新应用意识的形成和发展具有重要作用。

 试题重视现实生活中的热点问题,紧密结合社会实际和现实生活,考查考生运用数学工具和思想方法分析、解决问题的能力,体现了数学在解决实际问题中的重要作用和应用价值,体现了高考改革中加强实践性、应用性的要求。试卷中有很多涉及应用背景的试题,贴近考生实际,让考生深深感受到数学就在他们的身边。例如,全国一卷第19题,要求考生根据试题所给的散点图,自主选择回归方程类型,对企业投入产品的宣传费用进行预测。江苏卷第17题以山区修公路为背景,要求考生建立数学模型,适度创新,运用所学数学知识分析问题,完成山区公路设计。试题的设计使考生置身于问题情境之中,充分体现数学的应用价值,激发学生学习数学的兴趣,自觉形成创新应用意识,彰显数学的理性精神与人文情怀,进而影响学生的情感态度价值观。

 实践应用能力的培养是素质教育的根本要求,更是破除题海战术、死记硬背的有效措施,也有利于培养学生理论联系实际的思想方法和创新意识,形成良好的思维习惯。试题还突出了对实践能力的考查,要求考生动手实验,积极探索,运用所学数学知识技能和方法解决问题。例如四川卷第18题鼓励考生动手实验,在数学理性的指导下获得正确的实验结果。试题的设计有利于引导学生主动动手实验,积极思考问题。

 特点三:注重基础性考查,渗透数学传统文化

 数学各份试卷重视对数学基础的考查,试卷中考查基本概念、基本运算、基本思想方法的题目占到60%以上。同时试卷注重对高中所学内容的全面考查,在此基础上,试卷还强调对重点内容的重点考查,如在解答题中考查了函数、导数、三角函数、统计与概率、数列、立体几何、直线与圆锥曲线等中学数学重点内容。

 今年数学试卷的另一个亮点就是在基础试题中渗透中国数学文化。我国数学文化历史悠久,有许多不同于西方数学文化的鲜明特点:注重归纳、强调实用、讲究算法。中国古代数学名著《九章算术》、《数书九章》等在人类社会的发展中起着重要作用。试卷选取了体现中国古代优秀数学文化并与中学数学内容结合紧密的素材,编拟试题,要求考生运用所学的基础知识、基本思想方法去解决问题。例如全国二卷第8题的设计思路来源于《九章算术》中的“更相减损术”,湖北卷第2题选自《数书九章》中的“米谷粒分”问题。这些试题的设计让考生感受到我国古代数学的优秀传统——数学要关注生产、生活等社会问题,从而引导考生通过了解数学文化,体会数学知识方法在认识现实世界中的重要作用。在高考试题中渗透中国古代数学文化,强调中国古代数学文化的传统特色,使考生在考查过程中,潜移默化地接受我国古代数学文化的熏陶,自觉形成严谨、务实的治学态度,传承中华优秀传统文化,弘扬爱国主义精神。

 数学试卷体现了课程标准理念,能够准确区分考生,有利于科学选拔人才,有利于学生全面发展,有利于促进社会公平。试题科学规范、设计新颖,情境设置合理,引导中学数学教学重视知识的生成、发展、迁移、归纳、拓展以及文化的传承。

;

2022年浙江高考卷答案及试题完整版(答案更新中)

第Ⅰ卷(选择题 共50分)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.

(1)若A= ,B= ,则 =

(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)

答案:C 解析:画数轴易知.

(2)已知 ,则i( )=

(A) (B) (C) (D)

答案:B 解析:直接计算.

(3)设向量 , ,则下列结论中正确的是

(A) (B)

(C) (D) 与 垂直

答案:D 解析:利用公式计算,用排除法.

(4)过 点(1,0)且与直线x-2y-2=0平行的直线方程是

(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0

答案:A 解析:利用点斜式方程.

(5)设数列{ }的前n项和 = ,则 的值为

(A) 15 (B) 16 (C) 49 (D)64

答案:A 解析:利用 =S8-S7,即前8项和减去前7项和.

(6)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是

答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,用排除法易知.

(7)设a= ,b= ,c= ,则a,b,c的大小关系是

(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a

答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.

(8)设x,y满足约束条件 则目标 函数z=x+y的最大值是

(A)3 (B) 4 (C) 6 (D)8

答案:C 解析:画出可行域易求.

(9)一个几何体的三视图如图,该几何体的表面积是

(A)372 (C)292

(B)360 (D)280

答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.

(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是

(A) (B) (C) (D)

答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.

数 学(文科)(安徽卷)

第Ⅱ卷(非选择题共100分)

二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置?

(11)命题“存在x∈R,使得x2+2x+5=0”的否定是

答案:对任何X∈R,都有X2+2X+5≠0

解析:依据“存在”的否定为“任何、任意”,易知.

(12)抛物线y2=8x的焦点坐标是

答案:(2,0) 解析:利用定义易知.

(13)如图所示,程序框图(算法流程图)的输出值x=

答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.

(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .

答案:5.7% 解析: , ,易知 .

(15)若a>0 ,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).

①ab≤1; ② + ≤ ; ③a2+b2≥2; ④a3+b3≥3;

答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用 易知③正确

三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.

(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA= .

(1)求

(2)若c-b= 1,求a的值.

(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.

解:由cosA=1213 ,得sinA= =513 .

又12 bc sinA=30,∴bc=156.

(1) =bc cosA=156?1213 =144.

(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2?156?(1-1213 )=25,

∴a=5

(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 .

(1)求椭圆E的方程;

(2)求∠F1AF2的角平分线所在直线的方程.

(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.

解:(1)设椭圆E的方程为 由e=12 ,得ca =12 ,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为

(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=34 (X+2),

即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,

∠F1AF2的角平分线所在直线的斜率为正数.

设P(x,y)为∠F1AF2的角平分线所在直线上任一点,

则有

若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.

于是3x-4y+6=-5x+10,即2x-y-1=0.

所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.

18、(本小题满分13分)

某市2010年4月1日—4月30日对空气 污染指数的检测数据如下(主要污染物为可吸入颗粒物):

61,76,70,56,81,91,92,91,75 ,81,88,67,101,103,95,91,

77,86,81,83,82,82,64,79,86,85,75,71,49,45,

(Ⅰ) 完成频率分布表;

(Ⅱ)作出频率分布直方图;

(Ⅲ)根据国家标准,污 染指数在0~50之间时 ,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

请你依据所给数据和上述标准,对 该市的空气质量给出一个简短评价.

(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.

解:(Ⅰ) 频率分布表:

分 组 频 数 频 率

[41,51) 2 230

[51,61) 1 130

[61,71) 4 430

[71,81) 6 630

[81,91) 10 1030

[91,101) 5 530

[101,111) 2 230

(Ⅱ)频率分布直方图:

(Ⅲ)答对下述两条中的一条即可:

(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.

(ii)轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.

(19) (本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB;

(Ⅲ)求四面体B—DEF的体积;

(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.

(Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH= AB 又EF∥AB且 EF= AB

∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.

∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.

(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.

又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.

∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.

∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,

∴ AC⊥平面EDB.

(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.

∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC=

(20)(本小题满分12分)

设函数f(x)= sinx-cosx+x+1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.

(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.

解:由f(x)=sinx-cosx+x+1,0﹤x﹤2 ,

知 =cosx+sinx+1,

于是 =1+ sin(x+ ).

令 =0,从而sin(x+ )=- ,得x= ,或x=32 .

当x变化时, ,f(x)变化情况如下表:

X (0, )

( ,32 )

32

(32 ,2 )

+ 0 - 0 +

f(x) 单调递增↗ +2

单调递减↘ 32

单调递增↗

因此,由上表知f(x)的单调递增区间是(0, )与(32 ,2 ),单调递减区间是( ,32 ),极小值为f(32 )=32 ,极大值为f( )= +2.

(21)(本小题满分13分)

设 , ..., ,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y= x相切,对每一个正整数n,圆 都与圆 相互外切,以 表示 的半径,已知 为递增数列.

(Ⅰ)证明: 为等比数列;

(Ⅱ)设 =1,求数列 的前n项和.

(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.

解:(Ⅰ)将直线y= x的倾斜角记为 , 则有tan = ,sin = 12 .

设Cn的圆心为( ,0),则由题意知 = sin = 12 ,得 = 2 ;同理 ,题意知 将 = 2 代入,解得 rn+1=3rn.

故{ rn }为公比q=3的等比数列.

(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n? ,

记Sn= , 则有 Sn=1+2?3-1+3?3-2+………+n? . ①

=1?3-1+2?3-2+………+(n-1) ? +n? . ② ①-②,得

=1+3-1 +3-2+………+ -n? = - n? = –(n+ )?

Sn= – (n+ )? .

本文将为大家带来,2022浙江高考各科试卷及答案汇总。包括2022年浙江卷英语试卷及答案、2022年浙江卷语文试卷及答案、2022年浙江数学试卷及答案、2022年浙江卷物理试卷及答案、2022年浙江卷历史试卷及答案、2022年浙江卷化学试卷及答案、2022年浙江卷地理试卷及答案。

注:浙江是自主命题省份,因此高考试卷也被称为浙江卷。

一、2022年高考浙江卷语文答案

二、2022年高考浙江卷数学试卷及答案

三、2022年高考浙江卷英语试卷及答案

待更新

四、2022年高考浙江卷物理试卷及答案

五、2022年高考浙江卷历史试卷及答案

六、2022年高考浙江卷化学试卷及答案

七、2022年高考浙江卷生物试卷及答案

八、2022年高考浙江卷地理试卷及答案

九、2022年高考浙江卷政治试卷及答案

文章标签: # 数学 # 答案 # 考查