您现在的位置是: 首页 > 教育趋势 教育趋势

高考数学总结经验,高考数学技巧总结

tamoadmin 2024-05-26 人已围观

简介1.数学高考技巧2.数学高考选择题蒙题技巧3.高考数学大题的解题技巧及解题思想4.做高三数学选择题技巧蒙题方法5.高考数学选择题答题技巧6.高考数学题型与技巧是什么?7.高考数学有哪些题型 答题技巧及注意事项 数学冲刺复习一定要把大纲中规定的核心重要考点进行梳理,结合做题来进一步的巩固,熟练把握。那么接下来给大家分享一些关于高考数学解题技巧12种,希望对大家有所帮助。 高考数学解题技巧12种

1.数学高考技巧

2.数学高考选择题蒙题技巧

3.高考数学大题的解题技巧及解题思想

4.做高三数学选择题技巧蒙题方法

5.高考数学选择题答题技巧

6.高考数学题型与技巧是什么?

7.高考数学有哪些题型 答题技巧及注意事项

高考数学总结经验,高考数学技巧总结

数学冲刺复习一定要把大纲中规定的核心重要考点进行梳理,结合做题来进一步的巩固,熟练把握。那么接下来给大家分享一些关于高考数学解题技巧12种,希望对大家有所帮助。

高考数学解题技巧12种

一、调理大脑思绪,提前进入数学情境

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和 方法 、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

二、“内紧外松”,集中注意,消除焦虑怯场

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

三、沉着应战,确保旗开得胜,以利振奋精神

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

四、“六先六后”,因人因卷制宜

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难。就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异。先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。题一般要求较快地进行“兴奋灶”的转移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力,4.先小后大。小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗5.先点后面。近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

五、一“慢”一“快”,相得益彰

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

六、确保运算准确,立足一次成功

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

七、讲求规范书写,力争既对又全

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、"感情分"也就相应低了,此所谓心理学上的"光环效应"。"书写要工整,卷面能得分"讲的也正是这个道理。

八、面对难题,讲究方法,争取得分

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

1.缺步解答。对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为"已知",完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

九、以退求进,立足特殊。

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对"特殊"的思考与解决,启发思维,达到对"一般"的解决。

十、执果索因,逆向思考,正难则反

对一个问题正面思考发生思维受阻时,用 逆向思维 的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

十一、回避结论的肯定与否定,解决探索性问题

对探索性问题,不必追求结论的"是"与"否"、"有"与"无",可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

十二、应用性问题思路:面—点—线

解决应用性问题,首先要全面调查题意,迅速接受概念,此为"面";透过冗长叙述,抓住重点词句,提出重点数据,此为"点";综合联系,提炼关系,依靠数学方法,建立数学模型,此为"线",如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景

高考数学大题答题技巧

一、三角函数题

注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题

1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、概率问题

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

2、搞清是什么概率模型,套用哪个公式;

3、记准均值、方差、标准差公式;

4、求概率时,正难则反(根据p1+p2+...+pn=1);

5、注意计数时利用列举、树图等基本方法;

6、注意放回抽样,不放回抽样;

7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

8、注意条件概率公式;

9、注意平均分组、不完全平均分组问题。

五、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

3、战术上整体思路要保7分,争9分,想12分。

六、导数、极值、最值、不等式恒成立(或逆用求参)问题

1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

2、注意最后一问有应用前面结论的意识;

3、注意分论讨论的思想;

4、不等式问题有构造函数的意识;

5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

6、整体思路上保6分,争10分,想14分。

高考解答题答题须知

1、注意分步解答题目的形式,若各个小问题由一个大前提统领,则很可能上面的结论是下面问题的条件,要注意这一点,同时若小问题单独添加了限制条件,则其结论不可应用于下一个小问题的解答,所以应仔细审题,不可疏忽。

2、在运算过程中要求一次性运算准确,否则若出现运算失误,考生往往受思维定式的影响,很难检查出来。只要细心了,对自己就要有信心,不要一道题做了再反复去检查是否准确,那样会浪费大量宝贵的时间,在此问题上应把握“宁慢勿粗”。

3、对于解答题,要注重通性通法,不要过于追求技巧,把高考神秘化。因为高考越来越注重基础与通性通法的考查。举个例子来说吧,解析几何对大部分学生来说很难得全分,通常解析几何放在高考最后一题或倒数第二题的位置,算是一个压轴题吧。这类解析几何题的通法就是把直线方程与曲线方程联立,虽然有些时候可能计算会比较麻烦,但是都能做得出来。如果过于关注技巧,对有些题目就不适用了。

4、对绝大部分同学来说,要把主要精力和时间放在常规题目上(一般是指前19道题和最后1道选做题)。从高考的试卷来看,它的基础分可能会占到百分之七八十,如果你把基础题、常规题做好了,取得中等成绩是没问题的。在这个基础上,再拿一些难题的分数,就能获得比较理想的分数了。反过来,如果求快心切,就很容易在前面的基础题上出现本来可以避免的失误,而后面的难题又不一定得分,这样和别人的差距就拉大了,很吃亏。

高考数学解题技巧12种相关 文章 :

★ 2020高考数学的12种解题思路!

★ 高考数学选择题答题技巧汇总大全

★ 高考数学常见的解题策略

★ 2020高考数学的12个答题模板!

★ 高考数学答题技巧大全

★ 高考数学的解题技巧有哪些

★ 2020高考数学解题技巧大全

★ 高考数学6大解答题技巧

★ 高考数学题解题方法与七大知识点总结

★ 高考数学常用答题技巧参考

数学高考技巧

高考数学选择题总共有12道,一道题是5分,所以同学们在答选择题的时候,一定要仔细、运用一些答题技巧,能少错一道就多拿5分。这次我给大家整理了高考数学选择题答题 方法 ,供大家阅读参考。

目录

高考数学选择题答题方法

高考数学选择题题型特点

高考数学选择题秒杀技巧

高考数学选择题应该怎么做

高考数学选择题答题方法

一、重视基础知识

想要在高考选择题上拿满分,就要从三个方面去解决。基础理论和基本概念是考生们的一个额薄弱环节,所以必须要在这里下功夫,实际上它的选择题里要考的东西往往是我们原来的定义或是性质,或者是一个定理的外延,所以考生在复习一个定理和一个性质的时候,既要注意它的内涵也要注意相应的外延。

二、注重理解运用

高考选择题考察的主要还是对知识、概念的理解应用和辨析。尤其是语文、英语、文综、化学、生物,几乎都是要对题干和选项进行比较和辨析才能选出最佳答案。至于数学、物理则更多的是对概念的理解。所以我们在日常备考复习的时候要多注意一下对知识的理解和应用,在处理选择题上,能节约大量的时间,并且提高准确率。

三、注意 总结 归纳

很多的考生在复习备考的时候,对于基础知识进行归纳,对大题的难题进行回顾,但是对于选择题却没有一种很好的总结归纳方法。语文、英语单选题最多把正确答案代入,看一遍也就基本没什么了。阅读或是完形通过上下文理解一下,也就草草结束了。在理科学科上,选择题想要得满分还是要花费一些时间的。但是往往是参照着“标准答案”去回顾。因为“标准答案”基本上都是计算为主,当解答题处理的。我们要想出不同的解决途径。

<<<

高考数学选择题题型特点

(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。在高考的数学选择题中,定量型的试题所占的比重很大。而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

<<<

高考数学选择题秒杀技巧

1、直接法

从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择进行对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。

2、特例法

运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。

3、图解法

利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。

4、验证法

选择中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。

5、筛选法(也叫排除法、淘汰法)

充分运用选择题中单选题的特征,即有且只有一个正确选择这一信息,从选择入手,根据题设条件与各选择的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确。

<<<

高考数学选择题应该怎么做

代入法

高考数学的选择题中大部分是数值类型的,为了节省时间,可以逆向去推算,把答案去带入到题中去,逐一验证总会找到答案的,这就是代入法,是快速且有效的一种高考数学选择题解题技巧。应用代入法的前提是正常解题时间比代入法时间长。

数形结合

高考数学题最常用的就是数形结合法,由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来,也是数学选择题最直观的解题技巧之一。

估值选择

有些高考数学选择题,由于题目条件限制,没有直接的条件进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法,这种方法最大的优点就是快。

对于自己实在不会的高考数学选择题,最常用的一招就是蒙了,但是蒙也是有技巧的,在蒙的时候如果是数值类型的,大多数要选择“0”或者“1”,或者选择数值最小的,这是高考数学选择题比较常见的答案,选择蒙是为了更好的节约时间用在下面的题目里面。

检验法

对于具有一般性的数学选择题问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

<<<

2022高考数学选择题答题方法相关 文章 :

★ 高职高考数学考试答题技巧

★ 高三数学教师教学工作总结

★ 河南高考时间2022最新一览

★ 2022高考物理必考知识点总结

★ 2022高三教师个人工作计划

★ 高三数学教学工作计划范本2022

★ 江苏高考报名时间2022具体时间

★ 高三教师工作计划通用模板

★ 高三数学教师工作总结模板

★ 高考语文阅读答题技巧方法

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

数学高考选择题蒙题技巧

数学高考技巧如下:

1、合理安排,保持清醒。数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

2、通览全卷,摸透题情。刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情这样能提醒自己先易后难,也可防止漏做题。

3、解答题规范有序。一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。对于解答题中的容易题和中档题要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨。

计算过程要完整注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构对于解答题中的难题,得满分很困难,可以采用分段得分的策略,因为高考阅卷是分段评分。

比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度获取一定的分数。

有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

高考前的饮食:

高考前的饮食问题应该是考生家长最关心的问题,家长总是调样的给考生做吃的。其实高考不需要在饮食有太大的变化,因为高考的能量消耗,和平时上课的能量消耗比较来说,差不多。不需要额外吃喝东西,就是平时吃什么,高考前的饮食和平时差不多就行。

高考期间应注意饮食卫生,特别的东西反而不利于消化吸收,可能引起肠胃紊乱,甚至不消化拉肚子,尤其是高考最后3天里,太凉的东西不要一次性吃喝太多,尤其夏天,不要贪吃凉的东西,影响考试。

高考数学大题的解题技巧及解题思想

数学高考选择题蒙题技巧如下:

答案有根号的,不选;答案有1的,选;三个答案是正的时候,在正的中选;有一个是正X,一个是负X的时候,在这两个中选:题目看起来数字简单,那么答案选复杂的,反之亦然;上一题选什么,这一题选什么,连续有三个相同的则不适合本条;答题答得好,全靠眼睛瞟:以上都不实用的时候选B。

选择题蒙题技巧:选择与填空中出现不等式的题目,优选特殊值法,选取中间值带入,选取好算易得的;如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法,将各种函数模型牢记于心,每个模型特点也要牢记。

1.理清思路

在做数学选择题时,首先应该确定题目的难度和考点,弄清楚题目中所涉及的概念和关键点。然后进行分类讨论、列方程式、构造图形等步骤,把问题彻底梳理清楚,明确解题思路。

2.排除错误选项

在解答数学选择题时,我们经常会遇到一些看似正确但实际上错误的选项,这时需要注意排除这些错误选项。如果手头没有十分确定的答案,可以通过排除法逐个比较选项,找出不符合规律或结论的选项,再从剩下的选项中寻求正确答案。

3.寻找规律

数学选择题普遍具有一定的规律性,因此在做题时需要留心观察题目特点,寻找其中的规律。这种方法可以帮助我们更快地找到正确答案,减少盲目猜测的风险。

4.注意解题细节

在数学选择题中,有时候答案隐藏在细节之中。因此,在解答选择题时,需要注意每个选项所对应的数值范围、符号、单位标识等关键细节,尤其是面积、角度、坐标等问题。

总结:

数学高考选择题蒙题技巧是在做题过程中通过理清思路、排除错误选项、寻找规律等方法,提高猜测正确答案的几率。合理运用这些技巧不仅可以避免错选,还能提高答题效率,缩短答题时间。同时,建议考生在考试之前充分复习基础知识和习题,做到理论与实践的相结合,才能更好地掌握数学选择题解题技巧。

做高三数学选择题技巧蒙题方法

解题技巧

 一、三角函数题

 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

 二、数列题

 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

 3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

 三、立体几何题

 1.证明线面位置关系,一般不需要去建系,更简单;

 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

 四、概率问题

 1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

 2.搞清是什么概率模型,套用哪个公式;

 3.记准均值、方差、标准差公式;

 4.求概率时,正难则反(根据p1+p2+...+pn=1);

 5.注意计数时利用列举、树图等基本方法;

 6.注意放回抽样,不放回抽样;

 7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

 8.注意条件概率公式;

 9.注意平均分组、不完全平均分组问题。

 五、圆锥曲线问题

 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

 3.战术上整体思路要保7分,争9分,想12分。

 六、导数、极值、最值、不等式恒成立(或逆用求参)问题

 1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

 2.注意最后一问有应用前面结论的意识;

 3.注意分论讨论的思想;

 4.不等式问题有构造函数的意识;

 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

 6.整体思路上保6分,争10分,想14分。

 解题思想

 1.函数与方程思想

 函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

 2.数形结合思想

 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

 3.特殊与一般的思想

 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

 4.极限思想解题步骤

 极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

 5.分类讨论思想

 同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数*算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

高考数学选择题答题技巧

高考各科单选题答案都有一个共同的规律,既答案A、B、C、D的概率均为25%,所以不会的题蒙C只能做对四分之一的题。下面给大家分享一些关于做 高三数学 选择题技巧,希望对大家有所帮助。

一.做高三数学选择题技巧蒙题

数学蒙题技巧1

蒙题也是一门学问,本人高三学生,数学蒙题成功率在70以上。首先,要明确一点,蒙题不能纯粹蒙,你看过题就要有看题的效果。看完题后不会做,就先看选项,有些就可以排除,然后根据题设条件进行分析,有可能又会排除一些选项,这样就容易多了。

若果一个也排除不了,那就琢磨选项,如果有关于课外的(课内很少出现的)答案就很有可能就是那个。如果选项是4个数,一般是第二大的是正确选项。单看选项,一般BD稍多,A较少。还有一点,选了之后就不要改了,除非你有90以上的把握。

数学蒙题技巧2

据我所知的有数学第一题一般不会是A;最后一题不会是A;选择题的答案分布均匀;填空题不会就填0或1;答案有根号的,不选;答案有1的,选;三个答案是正的时候,在正的中选;有一个是正X,一个是负X的时候,在这两个中选;题目看起来数字简单,那么答案选复杂的,反之亦然;上一题选什么,这一题选什么,连续有三个相同的则不;以上都不实用的时候选B。

在计算题中,要首先写一答字。如果选项是4个数,一般是第二大的是正确选项。单看选项,一般BD稍多,A较少。还有一点,选了之后就不要改了,除非你有90以上的把握。和图形有关的选择填空可以取特值。

大题不会做,看上问的结论能不能用,还不会就照条件把你能想到的结论推出来,一般都有分,运气好可以拿1大半。填空题仔细点,2分钟没思路就跳,不会做写个最可能的答案,对的几率也不很小。

二.做高三数学选择题技巧蒙题原则

数学蒙题技巧守则

1、答案有根号的,不选

2、答案有1的,选

3、三个答案是正的时候,在正的中选

4、有一个是正X,一个是负X的时候,在这两个中选

5、题目看起来数字简单,那么答案选复杂的,反之亦然

6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条

7、答题答得好,全靠眼睛瞟

8、以上都不实用的时候选B

数学从易到难复查

填空题:慎重再慎重在数学的主观题当中,填空题并不像后面的大题,要求给出具体的解题步骤,它只要求考生给出一个最后的答案。这就要求考生在答题时更加慎重,按部就班来进行解题。

大题:步骤需明确在大题(计算题和证明题)阅卷过程中,一般是过程分和结论分分开给的。因此考生在答题时还是应该将步骤写明确,这样不但能够获得步骤分,同时也利于自己后来的检查。否则就跟填空题一样,答案一错就没有分了。

自身:定位需理性近年来,高考当中出现了一些奇怪的现象,就是一些学生平时的表现还不错,但他们的卷面得分就是上不去。这主要是学生自身的定位出现了问题。因为这些考生将过多的时间花在了难题上,这样一来,在容易题上出错的概率就大大增加。其实,难题在考试当中所占的比例仅仅为20%。因此,考生在答题时不要有“一定要把难题啃下来”的非理性念头。只要老老实实把容易题的分数拿全,那么考试的分数就不会很低。

答题:大胆再大胆在不是很有把握的情况下,最好不要将原来的答案涂掉,可以将两种答题 方法 都写在考卷上。阅卷老师一般会按照得分高的那种方法给分的。

三.高考数学选择题蒙题窍门

数量原则

理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。答案排列:3、3、3、3、3

实际状态:每个选项在2——4的范围内。

选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。即某一个选项为2个,某一个选项为4个

三不相同原则

即连续三个问题不会连续出现相同答案

答案排列不会出现ABCDE的英文字母排列顺序

中庸之道

即数值优先选择“中间量”选项,选项优先考虑BCD。在同一道题中优先考虑数值的“中间量”后考虑选项BCD。(如E选项对应数值为中间量时,优先从数值入手考虑)

出现诸如“以上结果都不对”的选项不予考虑

由提干给定信息入手,通过选项特征排除错误选项

选项基本特征如下:

单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值)

正值与负值(考前冲刺P12/25题根据提干排除负值)

有零与无零

区间的开与闭(看极端情况能否取等号)

正无穷与负无穷(通过极限考虑)

整数与小数(分数)

质数与合数

大于与小于

整除与不能整除

带符号与不带符号(例如根号、平方号等等)

少数服从多数原则

即看选项特征,具有同一特征多的选项优先考虑。

复杂表达式化简题

一般情况下选项出现1、2、0、-1、-2的情况比较多

前后无定位,连续几道题均不会都需猜蒙答案的情况

观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。

答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。

做高三数学选择题技巧蒙题方法相关 文章 :

★ 高考数学选择题蒙题方法归纳

★ 高考数学选择题蒙题方法归纳总结

★ 2020高考数学选择题蒙题技巧有哪些

★ 高考数学答题时间分配及数学选择题10大蒙题技巧

★ 2020年高考数学蒙题技巧

★ 做数学选择题的十种技巧

★ 高中数学选择题蒙题技巧2020

★ 高三数学重要知识点总结与蒙题技巧

★ 2020高考数学选择题蒙题技巧有哪些的

高考数学题型与技巧是什么?

高考数学选择题答题技巧,内容如下:

1、直接法

当选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定答案之后,从选项里找即可。

2、筛选法(排除法)

去伪存真,筛除一些较易判定的的、 不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。如筛去不合题意的以后, 结论只有一个,则为应选项。

3、特殊值法

根据答案中所提供的信息,选择某些特殊情况进行分析,或某些特殊值进行计算,或将字母 参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。

4、验证法(代入法)

将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

5、图象法

可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。

6、试探法

综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。

7、猜答(语感法)

选择题存在凭猜答得分的可能性,我们称为机遇分。

高考数学必考的题型:

1、函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

2、平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

3、数列及其应用

这部分是高考的重点而且是难点,要出-些综合题。

4、不等式.

主要考查不等式的求解和证明,且很少单独考查,主要是在解答题中比较大小。高考的重点和难点。

5、概率和统计

这部分和我们的生活联系比较大,属应用题。

6、空间位置关系的定性与定份析

主要是证明平行或垂直,求角和距离。要考察对定理的熟悉程度、运用程度。

7、解析几何

考的难点,运算大,一般含参数。

高考数学有哪些题型 答题技巧及注意事项

可以是:

一、数列题

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列。

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法。如果两端都是含n的式子,一般考虑数学归纳法,如何把当前的式子转化到目标式子,一般进行适当的放缩。

3、证明不等式时,有时构造函数,利用函数单调性很简单,所以要有构造函数的意识。

二、立体几何题

1、证明线面位置关系,一般不需要去建系,更简单。

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系。

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

三、概率问题

1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数。

2、搞清是什么概率模型,套用哪个公式。

3、记准均值、方差、标准差公式。

4、注意计数时利用列举、树图等基本方法。

5、注意放回抽样,不放回抽样。

6、注意零散的知识点(茎叶图、频率分布直方图、分层抽样等)在大题中的渗透。

四、圆锥曲线问题

1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法。

2、注意直线的设法,知道弦中点时,往往用点差法,注意自变量的取值范围。

高考数学题主要由选择题、填空题、解答题组成,针对不同题型,有不同的答题技巧和注意事项。比如选择题,如果实在不会做,可以使用排除法或代入法;解答题,一定要尽可能地详细解答,因为每一个步骤都是有分数的。

高考数学答题技巧

1、排除

排除方法是根据问题和相关知识你就知道你肯定不选择这一项,因此只剩下正确的选项.如果不能立即获得正确的选项,但是你们还是要对自己的需求都是要对这些有应的标准,提高解决问题的精度.注意去除这种方式还是一种解答这种大麻烦的好方式,也是解决选择问题的常用方法.

2、特殊值法

也就是说,根据标题中的条件,择选出来这种独特的方式还有知道他们,耳膜的内容关键都是要进行测量.在你使用这种方式答题的时候,你还是要看看这些方式都是有很多的要求会符合,你可以好好计算.

3、通过推测和测量,可以得到直接观测或结果

近年来,人们经常用这种方法来探索高考题中问题的规律性.这类问题的主要解决方法是采用不完整的归类方式,通过实验、猜测、试错验证、总结、归纳等过程,使问题得以解决.

高考数学答题注意事项

数列的题目与和相关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。

立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,能够从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同。

导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前间中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。

概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验准确与否的重要途径。

遇到复杂的式子能够用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成。

文章标签: # 数学 # 高考 # 选择题