您现在的位置是: 首页 > 教育趋势 教育趋势

余弦定理高考题,余弦定理高考题难题

tamoadmin 2024-05-28 人已围观

简介1.一题高考数学题!求详细解答!急!!谢谢!2.怎么利用正、余弦定理解三角形中的边和角?3.在三角形ABC中,c+b=2a,3sinA=5sinB,求角C(2013安徽高考数学题)您好!1,解:1)因为cos(A/2)=25比5,所以cosA=3/5,,所以sinA=4/5即tanA=4/3... 因为向量AB向量AC=3 ,所以b*c*cosA=3,又因为:S=b*c*sinA....所S=3

1.一题高考数学题!求详细解答!急!!谢谢!

2.怎么利用正、余弦定理解三角形中的边和角?

3.在三角形ABC中,c+b=2a,3sinA=5sinB,求角C(2013安徽高考数学题)

余弦定理高考题,余弦定理高考题难题

您好!

1,

解:1)

因为cos(A/2)=2√5比5,所以cosA=3/5,,所以sinA=4/5即tanA=4/3...

因为向量AB×向量AC=3 ,所以b*c*cosA=3,又因为:S=b*c*sinA....所S=3*tanA=4

2)

因为b*c*sinA=S=4,即:b*1*4/5=4 ,即b=5,

再由余弦定理得:a^2=b^2+c^2-2bccosA

解出a=2√5

2,解:化解f(x)可得:f(x)=-3sin?x +2,代入π/3可得f(x)=-1/4

因为sinx属于[-1,1],所以sin?x 属于[0,1] 即:f(x)属于[-1,2] 即最大值为2,最小值为-1

3,解:因为A,B均为锐角,且且sinA=√5/5,sinB=√10/10,所以cosA=2√5/5,CosB=3√10/10

所以cos(A+B)=cosA*cosB-sinA*sinB=√2/2,,,,,有因为A+B属于[0,π],,所以A+B=π/4

希望对你有所帮助!!!

一题高考数学题!求详细解答!急!!谢谢!

正弦定理:a/sinA=b/sinB=c/sinC=2R

余弦定理:a^2 = b^2 + c^2 - 2·b·c·cosA

证明:a=2RsinA b=2RsinB c=2RsinC

a^2 - b^2 - c^2 = {2Rsin[180-(B+C)]}^2 - (2RsinB)^2 - (2RsinC)^2

=....= - 2cosA 2RsinB 2RsinC= - 2·b·c·cosA

怎么利用正、余弦定理解三角形中的边和角?

先用正弦定理,得(2sinA-sinC)cosB=sinBcosC 故2sinAcosB=sin(B+C)=sinA cosB=1/2 B=π/3(二由余弦定理,b^2=a^2+c^2-2*a*c*CosB得 b^2=7=a^2+c^2-ac 又面积S=1/2acsinB 则 ac=6故(a+c)^2=7+3ac=25 故 a+c=5

在三角形ABC中,c+b=2a,3sinA=5sinB,求角C(2013安徽高考数学题)

正余弦定理是三角函数中有关三角知识的继续与发展,进一步揭示了任意三角形的边与角之间的关系,其边角转换功能在求解三角形及判断三角形形状时有着重要应用. 在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题.

使用情景:三角形中

解题步骤:

第一步 直接运用正弦或余弦定理通常使用的条件判断是运用正弦定理还是余弦定理;

第二步 利用相应的正弦、余弦定理的计算公式即可得出所求的结论.

例1 中,角 , , 所对的边分别为 , , ,若 , , ,则 ( ).

A. B. C. D.

答案C

由余弦定理 ,

又由 ,得

故选C.

考点:余弦定理.

点评余弦定理主要解决两类三角问题:其一是已知三边求其中一角的情况;其二是已知两边及其一夹角求另一边的情况.

例2 在 中, , , 则角 ( )

A.

B. 或

C.

D.

答案A

解析

由题意得,根据正弦定理可知 ,

又因为 ,所以 ,故选A.

考点:正弦定理.

总结正弦定理主要解决两类三角问题:

其一是已知二边及其一边的对角求其中一角的情况;

其二是已知一边及其一对角求另一边的情况.

解:由正弦定理,得 a/sinA=b/sinB=c/sinC=k

由3sinA=5sinB,得 3a=5b 且 c+b=2a(已知)

∴ c>a>b>0,b=3a/5,c=7a/5,0<C<π

则 cosC=(a?+b?-c?)/(2ab)=-1/2(余弦定理)

故 C=2π/3

文章标签: # 余弦定理 # 10px # 0px