您现在的位置是: 首页 > 教育趋势 教育趋势

2023年北京数学高考试卷_北京数学高考试卷

tamoadmin 2024-05-31 人已围观

简介1.有关数学高考题2.北京今年数学高考难吗 高考试卷往往都是在考生高度紧张的情况下完成的,想要记住全部答案基本上是不可能的,这就需要我们查找资料来确定高考是否犯错误。下面是我为大家收集的关于新高考2卷数学试题及答案2022年。希望可以帮助大家。 新高考二卷数学试卷 新高考二卷数学答案

1.有关数学高考题

2.北京今年数学高考难吗

2023年北京数学高考试卷_北京数学高考试卷

高考试卷往往都是在考生高度紧张的情况下完成的,想要记住全部答案基本上是不可能的,这就需要我们查找资料来确定高考是否犯错误。下面是我为大家收集的关于新高考2卷数学试题及答案2022年。希望可以帮助大家。

新高考二卷数学试卷

新高考二卷数学答案

如何填报好合适的高考志愿

每年高考填报志愿都让家长和学生头痛,因为要考虑的因素太多,总是左右为难,举棋不定。那么到底什么是自己的“最佳”专业?在确定“最佳”专业时,应该考虑哪些现实因素呢?

高考志愿是指高考考生在选择自己愿意就读的高校与专业时,按规定向招生部门和高校就自己的决定所表达的书面意见。通过填报高考志愿,一方面,考生表达了自己的要求,包括希望就读于哪种学校、哪所大学,喜欢什么专业等;另一方面,各高校又以学生填报的志愿为其录取的基本依据,从众多的报考者中择优选拔合格的新生。高校与学生之间的这种“双向选择”,正如人们求职、找工作实行的“双向选择”一样。

填报志愿是高校招生过程中的重要环节之一。无论对考生还是对学校和招生部门来说,都是不可忽视的。高校录取新生,既要以 文化 成绩为主全面考查学生的德智体条件,又要切实尊重考生志愿。对文化成绩上了线的考生,学校应严格按志愿录取。特别是实行学生缴费上学, 毕业 后自主择业的高教体制后,考生志愿将更加受重视、受尊重。因此,高考志愿不仅极大地关系到考生能否进入相应理想的院校、专业,关系到高校能否挑选到合格的学生,更关系到国家 教育 事业的健康发展。考生、家长、学校乃至社会都应重视填报志愿这一环节。

但是,在近几年招生中,却出现了有的学校(专业)报考人数过于集中,有的学校(专业)第一志愿在同批录取控制 分数线 以上的人数为计划招生人数的2倍、3倍乃至4倍、5倍之多,“撞车”现象严重;而有的学校某些专业却很少有人或无人填报。出现这种情况的原因很多,主要是一些考生和家长对高等学校的专业设置情况、毕业生的使用情况以及社会需求缺乏了解,同时更重要地是对自己的潜能和优势也缺乏清楚地了解。因此高考志愿出现了很多误区,如争挤热门倾向,“钱途”倾向,包办倾向,盲目攀比倾向,名校倾向,兴趣至上倾向等。陷入这些误区并最终使考生上演“悲剧”,无不和忽视个人潜能发展相关。

但由于选报志愿是个复杂问题,受“双向选择“的影响非常大,因此,在人生第一次重大决策时,在选择未来“最佳”专业时,要综合考虑和研究很多因素,但概括起来应是两大因素:一是外在的现实因素,也可以认为是短线因素,二是内在的个人潜能发展因素,也可以认为是长线因素。对不同的考生而言,这两大因素之间虽然有机地结合比较困难,但为了不至于“悲剧”重演,如何把握招生实际情况,又能立足长远发展,我们分别根据不同考虑因素提供相应建议,供参考。

(1)升学因素。重点考虑这一因素的考生或家长,一般是把保证被录取做为第一目标,把其他因素放在其次,这一般是高考成绩不大理想又希望尽快升学的考生。他们最大的担心就是能否升学,因此在大学的专业选择面上存在一些局限,甚至很多人宁可报考“冷门”,也不愿冒不必要的风险。这种考虑对于他们是最现实的,也是可以理解的。但在保证能够被录取的情况下,仍应该考虑一下自己的潜能和优势能否通过学这个专业得到更大发展,选择面虽然少,但仍有选择。一方面,在有限的选择中,去选择更适合潜能发展的专业,无疑为今后的发展奠定了良好的开端。另一方面,虽然不能进入符合自我潜能发展的“最佳”专业,但如果进入相近专业,同样为今后的“最佳”专业方向的发展打下基础,再通过进一步地 考研 、读博得到修正。例如如果计算机专业是自己的未来发展方向,但由于语文或化学成绩不太好,影响了你的高考总分,与其报考风险较大的计算机专业,不如报考较“冷门”的数学专业。有了数学基础,再主攻计算机专业便有了扎实基础。这类考生我们还有一个更重要的建议,要想在未来得到长足、持续的发展,选择更适合的专业比选择学校重要得多。因此,在有把握进入自己的“最佳”专业时,可以考虑“降格”选择院校,如大城市到中等城市,发达城市到发展中城市。在你追求人生目标当中,有句话相送:要立大志、立长志,相信自己的潜能会最大发挥出来。

(2)就业因素。把将来毕业后求职是否方便放在第一位, 其它 因素作次要考虑。这往往是一类很有把握上线被录取的考生。能否容易找到工作,这也是家长非常关心的因素。因为家长深有感触,这几年我国的职业需求情况变换很快,甚至很多大学生“毕业即失业”,孩子苦恼,家长痛心。基于这种考虑,本应无可厚非,但有些家长过于把这个因素放在首位,而忽略个人的潜能发展,将会得不偿失。原因有三:其一是职业“特点”变换很快,难以把握,当你认为很“热”的时候,可能快到“冷”的时候了,这和炒股一样,此一时,彼一时;其二即使找到了需求很大的专业,如果做得不开心或不够出色,或者说不适合这种职业,同样也容易淘汰。因此,家长和考生们切莫被眼前“火热”的就业形势所误导,在充分考虑就业前景时,同时别忘了自我潜能是否能在这个领域得到大的发展。

(3)成本因素。家庭经济困难的考生,一般要考虑选择收费标准相对较低或奖学金、助学条件较好的院校和专业,而把其他因素放在其次。有这种想法的家长和考生我们更能理解,如果自己的潜能发展的确可以在这样的院校找到相应的专业,那是最好不过了。但如果和自己的潜能发展太背离,也许需要慎重考虑。例如,自我潜能可能应该在美术方面得到最大发展,而由于经济问题,可能只好选择师范类的计算机专业。如果是这种情况,家长和考生必须要重新算一笔帐,也许进入了师范类的计算机专业暂时少花钱,最后可能也因此拿到了文凭,但工作的不顺心和压力,可能会导致他重新学习美术,到那时浪费的时间用金钱难以买到。当然不排除可以利用业余时间来学习美术,但无论如何一个业余的美术工作者很难与一个专业的美术工作者相匹敌。好在我国已经出台了“贷款助学”的政策,充分利用这个条件进入你的“最佳”专业,可以一边学习,一边参加 社会实践 。到那时你所享受的不光是学到了自己喜爱的“最佳”专业,同时也享受到了终于有能力偿还贷款的一种快乐。要记住:在这样的时代,时间比金钱更重要。

(4)名校因素。非名牌大学不去,这是一部分“尖子”学生的普遍想法。如果仅仅是为了炫耀和光彩,而和自我潜能发展的专业相去甚远,可能获得的是暂时的“面子”,同时也得到了终生的悔恨。据调查,在目前名牌大学校园中,相当一部分同学不适应本专业的学习,惜日的“天之骄子”突然变成今日的后进生,自然难以承受这种打击。轻微者,烦躁、失眠;严重者,精神崩溃、侵害他人或自杀。虽然这和没有正确的学习目的和人生发展目标有关,但相当一部分原因是专业的不适应。如果再缺乏相应的引导,自然产生压抑的心理。前一段时间,教科院潜能研究中心接待了一个清华大学的高才生,已上大三的他,眼看再过一年就毕业了,却落入到了要退学的境地。经过潜能测试,发现孩子明显在文学、历史、建筑艺术方面有很大的潜能,而学的却是无线电专业。母亲流着泪向我们讲述了孩子的成长经历,与我们的测试大致相符,如小时候,喜欢看文学名著和古迹碑文,小学没毕业就已经把初中的英语学完了。孩子是以理科全优成绩进入了清华大学,但却没想到孩子在大二已明显地对所学习的课程厌烦,专业课再二三地不及格,已到了劝退学的地步。但孩子似乎不象高中时大家所认为的属于“指哪打哪”的人了,开始不听母亲和老师的话,一心想学建筑,但却到了今天这个地步。作为母亲,怎么能忍受孩子失去清华大学的毕业证书呢!现在所痛悔的是,当初为了上清华,忽略了选择适合自我潜能发展的专业问题。其实退一步,海阔天空。如果选择更符合自我潜能发展的专业,即使院校稍微逊色一点,但对自己的成才大有好处。我们奉劝那些“尖子”学生,在考虑名牌大学的同时,不要忽视专业。因为专业将可能终生与你为伴,而学校只与你相处短暂的时光。未来社会虽然需要通才,或复合型人才,但专业更是立足之本。选择了更能充分发挥潜能的专业或职业,你的人生目标就会更远大,就不会为眼前的考试、暂时的排位斤斤计较,因为你更醉心于创造社会价值,更醉心于迈向自我实现的境界中。

对于大部分考生来说,需要把升学、就业、成本和潜能发展等几个因素综合兼顾,统筹考虑。事实上,许多家长,还有更多的因素要考虑,如考生身体状况、院校或专业竞争状况、地理方位、院校条件等,但无论如何你必须了解自己的潜能和优势,因为命运永远掌握在自己手中,未来最大的赢家是善于控制自我的人。

鉴于上述情况,我们认为考生在报考专业时,除了考虑到报考学校、经济条件、就业情况和专业发展前景等因素外,更重要的是要考虑自我潜能发展的因素。经过我们这几年对高考生心理特点研究和实际测试的应用情况,我们认为影响一个人潜能发展的四个重要因素是:学科兴趣、生涯动机倾向、能力发展的优势所在、以及自己的个性禀赋特点,并对这些方面予以全面、综合地考虑和分析。

新高考2卷数学试题及答案2022年相关 文章 :

★ 2022年新高考全国二卷物理试卷及答案解析

★ 2022年全国乙卷理科数学试卷及答案

★ 2022北京高考数学(文科)试题及答案

★ 2022新高考数学Ⅰ卷试卷及参考答案

★ 2022北京高考数学(理科)试题及答案

★ 2022年高考全国乙卷(理科)数学科目题目与答案解析

★ 2022全国乙卷理科数学真题及答案解析

★ 2022年全国高考北京卷数学科目考试真题

★ 2022高考全国乙卷试题及答案(理科)

★ 2022年高考数学卷真题及答案解析(全国新高考1卷)

有关数学高考题

(1)解析:∵在“厨余垃圾”箱中,厨余垃圾=400,可回收物=30,其他垃圾=20

厨余垃圾投放正确的概率=厨余垃圾量/总量=400/(400+30+20)=8/9

(2)解析:∵在“厨余垃圾”箱中,错投垃圾=30+20=50,在“可回收物”箱中,错投垃圾=100+20=120 ,在“其他垃圾”箱中,错投垃圾=100+30=130

∴错投垃圾总量为50+120+130=300

∴生活垃圾投放错误的概率=错投垃圾总量/垃圾总量=300/1000=3/10

(3)解析:假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,由表中可知,a+b+c=600.当数据a,b,c的方差最大时,即厨余垃圾完全正确投放时,a=600,b=0,c=0,此时s2= 1/3*((600-600/3)^2+(0-600/3)^2+(0-600/3)^2)=80000

北京今年数学高考难吗

1. (05年广东卷)已知数列 满足 , , ….若 ,则(B)

(A) (B)3(C)4(D)5

2. (05年福建卷)3.已知等差数列 中, 的值是 ( A )

A.15 B.30 C.31 D.64

3. (05年湖南卷)已知数列 满足 ,则 = (B )

A.0 B. C. D.

4. (05年湖南卷)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则

= (C)

A.2 B. C.1 D.

5. (05年湖南卷)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=(C)

A.sinx B.-sinx C.cosx D.-cosx

6. (05年江苏卷)在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21,则a3+ a4+ a5=(C )

( A ) 33 ( B ) 72 ( C ) 84 ( D )189

7. (05年全国卷II) 如果数列 是等差数列,则(B )

(A) (B) (C) (D)

8. (05年全国卷II) 11如果 为各项都大于零的等差数列,公差 ,则(B)

(A) (B) (C) (D)

9. (05年山东卷) 是首项 =1,公差为 =3的等差数列,如果 =2005,则序号 等于(C )

(A)667 (B)668 (C)669 (D)670

10. (05年上海)16.用n个不同的实数a1,a2,┄an可得n!个不同的排列,每个排列为一行写成 1 2 3

一个n!行的数阵.对第i行ai1,ai2,┄ain,记bi=- ai1+2ai2-3 ai3+┄+(-1)nnain, 1 3 2

i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3

是12,所以,b1+b2+┄+b6=-12+2 12-3 12=-24.那么,在用1,2,3,4,5形成 2 3 1

的数阵中, b1+b2+┄+b120等于 3 1 2

3 2 1

[答]( C )

(A)-3600 (B) 1800 (C)-1080 (D)-720

11. (05年浙江卷) =( C )

(A) 2 (B) 4 (C) (D)0

12. (05年重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( C)

(A) 4;

(B) 5;

(C) 6;

(D) 7。

13、(04年浙江文理(3)) 已知等差数列 的公差为2,若 成等比数列, 则 =

(A) –4 (B) –6 (C) –8 (D) –10

14、(04年全国卷四文理6).等差数列 中, ,则此数列前20项和等于

A.160 B.180 C.200 D.220

15、(04年全国三文(4))等比数列 中 ,则 的前4项和为

A. 81 B. 120 C. 125 D. 192

16、(04年天津卷理8.) 已知数列 ,那么“对任意的 ,点 都在直线 上”是“ 为等差数列”的

A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件

17、(04年全国卷三理⑶)设数列 是等差数列, ,Sn是数列 的前n项和,则( )

A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5

18.(2003天津文)5.等差数列 ( C )

A.48 B.49 C.50 D.51

19.(2001天津)若Sn是数列{an}的前n项和,且 则 是 ( B )

(A)等比数列,但不是等差数列 (B)等差数列,但不是等比数列

(C)等差数列,而且也是等比数列 (D)既非等比数列又非等差数列

20、(04年湖北卷理8文9).已知数列{ }的前n项和 其中a、b是非零常数,则存在数列{ }、{ }使得( )

A. 为等差数列,{ }为等比数列

B. 和{ }都为等差数列

C. 为等差数列,{ }都为等比数列

D. 和{ }都为等比数列

21、(04年重庆卷理9). 若数列 是等差数列,首项 ,则使前n项和 成立的最大自然数n是:( )

A 4005 B 4006 C 4007 D 4008

二、填空题

1、(05年广东卷)

设平面内有n条直线 ,其中有且仅有两条直线互相平行,任意三角形不过同一点.若用 表示这n条直线交点的个数,则 _____5________;当n>4时, =__ ___________.

2、. (05年北京卷)已知n次多项式 ,

如果在一种算法中,计算 (k=2,3,4,…,n)的值需要k-1次乘法,计算 的值共需要9次运算(6次乘法,3次加法),那么计算 的值共需要 n(n+3) 次运算.

下面给出一种减少运算次数的算法: (k=0, 1,2,…,n-1).利用该算法,计算 的值共需要6次运算,计算 的

值共需要 2n 次运算.

3. (05年湖北卷)设等比数列 的公比为q,前n项和为S?n,若Sn+1,S?n,Sn+2成等差数列,则q的值为 -2 .

4. (05年全国卷II) 在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_______216 __.

5. (05年山东卷)

6. (05年上海)12、用 个不同的实数 可得到 个不同的排列,每个排列为一行写成一个 行的数阵。对第 行 ,记 , 。例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以, ,那么,在用1,2,3,4,5形成的数阵中, =_-1080_________。

7、计算: =_3 _________。

8. (05年天津卷)设 ,则

9、 (05年天津卷)在数列{an}中, a1=1, a2=2,且 ,

则 =_2600_ ___.

10. (05年重庆卷) = -3 .

11、(04年上海卷理12) 若干个能唯一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S1与S2; ②a2与S3; ③a1与an; ④q与an.其中n为大于1的整数, Sn为{an}的前n项和.(①、④)

12(04年江苏卷15).设数列{an}的前n项和为Sn,Sn= (对于所有n≥1),且a4=54,则a1的数值是__2

13(04年北京文理(14))定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列 是等和数列,且 ,公和为5,那么 的值为___,且(文:这个数列的前21项和 的值为_____)(理:这个数列的前n项和 的计算公式为__( 3 ;(文:52)理:当n为偶数时, ;当n为奇数时, )

三、解答题

1.(05年北京卷)

设数列{an}的首项a1=a≠ ,且 ,

记 ,n==l,2,3,…?.

(I)求a2,a3;

(II)判断数列{bn}是否为等比数列,并证明你的结论;

(III)求 .

解:(I)a2=a1+ =a+ ,a3= a2= a+ ;

(II)∵ a4=a3+ = a+ , 所以a5= a4= a+ ,

所以b1=a1- =a- , b2=a3- = (a- ), b3=a5- = (a- ),

猜想:{bn}是公比为 的等比数列?

证明如下:

因为bn+1=a2n+1- = a2n- = (a2n-1- )= bn, (n∈N*)

所以{bn}是首项为a- , 公比为 的等比数列?

(III) .

2.(05年北京卷)数列{an}的前n项和为Sn,且a1=1, ,n=1,2,3,……,求

(I)a2,a3,a4的值及数列{an}的通项公式;

(II) 的值.

解:(I)由a1=1, ,n=1,2,3,……,得

, , ,

由 (n≥2),得 (n≥2),

又a2= ,所以an= (n≥2),

∴ 数列{an}的通项公式为 ;

(II)由(I)可知 是首项为 ,公比为 项数为n的等比数列,∴ =

3.(05年福建卷)

已知{ }是公比为q的等比数列,且 成等差数列.

(Ⅰ)求q的值;

(Ⅱ)设{ }是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.

解:(Ⅰ)由题设

(Ⅱ)若

当 故

故对于

4. (05年福建卷)已知数列{an}满足a1=a, an+1=1+ 我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:

(Ⅰ)求当a为何值时a4=0;

(Ⅱ)设数列{bn?}满足b1=-1, bn+1= ,求证a取数列{bn}中的任一个数,都可以得到一个有穷数列{an};

(Ⅲ)若 ,求a的取值范围.

(I)解法一:

故a取数列{bn}中的任一个数,都可以得到一个有穷数列{an}

5. (05年湖北卷)设数列 的前n项和为Sn=2n2, 为等比数列,且

(Ⅰ)求数列 和 的通项公式;

(Ⅱ)设 ,求数列 的前n项和Tn.

解:(1):当

故{an}的通项公式为 的等差数列.

设{bn}的通项公式为

(II)

两式相减得

6. (05年湖北卷)已知不等式 为大于2的整数, 表示不超过 的最大整数. 设数列 的各项为正,且满足

(Ⅰ)证明

(Ⅱ)猜测数列 是否有极限?如果有,写出极限的值(不必证明);

(Ⅲ)试确定一个正整数N,使得当 时,对任意b>0,都有

解:(Ⅰ)证法1:∵当

于是有

所有不等式两边相加可得

由已知不等式知,当n≥3时有,

证法2:设 ,首先利用数学归纳法证不等式

(i)当n=3时, 由

知不等式成立.

(ii)假设当n=k(k≥3)时,不等式成立,即

即当n=k+1时,不等式也成立.

由(i)、(ii)知,

又由已知不等式得

(Ⅱ)有极限,且

(Ⅲ)∵

则有

故取N=1024,可使当n>N时,都有

7. (05年湖南卷)已知数列 为等差数列,且

(Ⅰ)求数列 的通项公式;

(Ⅱ)证明

(I)解:设等差数列 的公差为d.

由 即d=1.

所以 即

(II)证明因为 ,

所以

8. (05年湖南卷)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.

(Ⅰ)求xn+1与xn的关系式;

(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不

要求证明)

(Ⅱ)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的

最大允许值是多少?证明你的结论.

解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为

(II)若每年年初鱼群总量保持不变,则xn恒等于x1, n∈N*,从而由(*)式得

因为x1>0,所以a>b.

猜测:当且仅当a>b,且 时,每年年初鱼群的总量保持不变.

(Ⅲ)若b的值使得xn>0,n∈N*

由xn+1=xn(3-b-xn), n∈N*, 知

0<xn<3-b, n∈N*, 特别地,有0<x1<3-b. 即0<b<3-x1.

而x1∈(0, 2),所以

由此猜测b的最大允许值是1.

下证 当x1∈(0, 2) ,b=1时,都有xn∈(0, 2), n∈N*

①当n=1时,结论显然成立.

②假设当n=k时结论成立,即xk∈(0, 2),

则当n=k+1时,xk+1=xk(2-xk?)>0.

又因为xk+1=xk(2-xk)=-(xk-1)2+1≤1<2,

所以xk+1∈(0, 2),故当n=k+1时结论也成立.

由①、②可知,对于任意的n∈N*,都有xn∈(0,2).

综上所述,为保证对任意x1∈(0, 2), 都有xn>0, n∈N*,则捕捞强度b的最大允许值是1.

9. (05年江苏卷)设数列{an}的前项和为 ,已知a1=1, a2=6, a3=11,且 , 其中A,B为常数.

(Ⅰ)求A与B的值;

(Ⅱ)证明数列{an}为等差数列;

(Ⅲ)证明不等式 .

解:(Ⅰ)由 , , ,得 , , .

把 分别代入 ,得

解得, , .

(Ⅱ)由(Ⅰ)知, ,即

, ①

又 . ②

②-①得, ,

即 . ③

又 . ④

④-③得, ,

∴ ,

∴ ,又 ,

因此,数列 是首项为1,公差为5的等差数列.

(Ⅲ)由(Ⅱ)知, .考虑

∴ .

即 ,∴ .

因此, .

10. (05年辽宁卷)已知函数 设数列 }满足 ,数列 }满足

(Ⅰ)用数学归纳法证明 ;

(Ⅱ)证明

解:(Ⅰ)证明:当 因为a1=1,

所以 ………………2分

下面用数学归纳法证明不等式

(1)当n=1时,b1= ,不等式成立,

(2)假设当n=k时,不等式成立,即

那么 ………………6分

所以,当n=k+1时,不等也成立。

根据(1)和(2),可知不等式对任意n∈N*都成立。 …………8分

(Ⅱ)证明:由(Ⅰ)知,

所以

…………10分

故对任意 ………………(12分)

11. (05年全国卷Ⅰ) 设正项等比数列 的首项 ,前n项和为 ,且 。

(Ⅰ)求 的通项;

(Ⅱ)求 的前n项和 。

解:(Ⅰ)由 得

可得

因为 ,所以 解得 ,因而

(Ⅱ)因为 是首项 、公比 的等比数列,故

则数列 的前n项和

前两式相减,得

12. (05年全国卷Ⅰ)

设等比数列 的公比为 ,前n项和 。

(Ⅰ)求 的取值范围;

(Ⅱ)设 ,记 的前n项和为 ,试比较 与 的大小。

解:(Ⅰ)因为 是等比数列,

上式等价于不等式组: ①

或 ②

解①式得q>1;解②,由于n可为奇数、可为偶数,得-1<q<1.

综上,q的取值范围是

(Ⅱ)由 得

于是

又∵ >0且-1< <0或 >0

当 或 时 即

当 且 ≠0时, 即

当 或 =2时, 即

13. (05年全国卷II) 已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .

(Ⅰ) 证明 为等比数列;

(Ⅱ) 如果数列 前3项的和等于 ,求数列 的首项 和公差 .

(I)证明:∵ 、 、 成等差数列

∴2 = + ,即

又设等差数列 的公差为 ,则( - ) = ( -3 )

这样 ,从而 ( - )=0

∵ ≠0

∴ = ≠0

∴ 是首项为 = ,公比为 的等比数列。

(II)解。∵

∴ =3

∴ = =3

14.( 05年全国卷II)

已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .

(Ⅰ) 证明 为等比数列;

(Ⅱ) 如果无穷等比数列 各项的和 ,求数列 的首项 和公差 .

(注:无穷数列各项的和即当 时数列前 项和的极限)

解:(Ⅰ)设数列{an}的公差为d,依题意,由 得

即 ,得 因

当 =0时,{an}为正的常数列 就有

当 = 时, ,就有

于是数列{ }是公比为1或 的等比数列

(Ⅱ)如果无穷等比数列 的公比 =1,则当 →∞时其前 项和的极限不存在。

因而 = ≠0,这时公比 = ,

这样 的前 项和为

则S=

由 ,得公差 =3,首项 = =3

15. (05年全国卷III)

在等差数列 中,公差 的等差中项.

已知数列 成等比数列,求数列 的通项

解:由题意得: ……………1分

即 …………3分

又 …………4分

又 成等比数列,

∴该数列的公比为 ,………6分

所以 ………8分

又 ……………………………………10分

所以数列 的通项为 ……………………………12分

16. (05年山东卷)

已知数列 的首项 前 项和为 ,且

(I)证明数列 是等比数列;

(II)令 ,求函数 在点 处的导数 并比较 与 的大小.

解:由已知 可得 两式相减得

即 从而 当 时 所以 又 所以 从而

故总有 , 又 从而 即数列 是等比数列;

(II)由(I)知

因为 所以

从而 =

= - =

由上 - =

=12 ①

当 时,①式=0所以 ;

当 时,①式=-12 所以

当 时, 又

所以 即① 从而

17.(05年上海)本题共有2个小题,第1小题满分6分, 第2小题满分8分.

假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,

(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?

(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?

[解](1)设中低价房面积形成数列{an},由题意可知{an}是等差数列,

其中a1=250,d=50,则Sn=250n+ =25n2+225n,

令25n2+225n≥4750,即n2+9n-190≥0,而n是正整数, ∴n≥10.

到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.

(2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列,

其中b1=400,q=1.08,则bn=400?(1.08)n-1?0.85.

由题意可知an>0.85 bn,有250+(n-1)?50>400?(1.08)n-1?0.85.

由计箅器解得满足上述不等式的最小正整数n=6.

到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.

18. (05年天津卷)

已知 .

(Ⅰ)当 时,求数列 的前n项和 ;

(Ⅱ)求 .

(18)解:(Ⅰ)当 时, .这时数列 的前 项和

. ①

①式两边同乘以 ,得 ②

①式减去②式,得

若 ,

若 ,

(Ⅱ)由(Ⅰ),当 时, ,则 .

当 时,

此时, .

若 , .

若 , .

19. (05年天津卷)若公比为c的等比数列{ }的首项 =1且满足: ( =3,4,…)。

(I)求c的值。

(II)求数列{ }的前 项和 。

20. (05年浙江卷)已知实数a,b,c成等差数列,a+1,了+1,c+4成等比数列,求a,b,c.

解:由题意,得 由(1)(2)两式,解得

将 代入(3),整理得

解得 或

故 , 或

经验算,上述两组数符合题意。

21(05年浙江卷)设点 ( ,0), 和抛物线 :y=x2+an x+bn(n∈N*),其中an=-2-4n- , 由以下方法得到:

x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点 在抛物线 :y=x2+an x+bn上,点 ( ,0)到 的距离是 到 上点的最短距离.

(Ⅰ)求x2及C1的方程.

(Ⅱ)证明{ }是等差数列.

解:(I)由题意,得 。

设点 是 上任意一点,则

令 则

由题意,得 即

又 在 上,

解得

故 方程为

(II)设点 是 上任意一点,则

令 ,则 .

由题意得g ,即

即 (*)

下面用数学归纳法证明

①当n=1时, 等式成立。

②假设当n=k时,等式成立,即

则当 时,由(*)知

即当 时,等式成立。

由①②知,等式对 成立。

是等差数列。

22. (05年重庆卷)数列{an}满足a1?1且8an?1?16an?1?2an?5?0 (n?1)。记 (n?1)。

(1) 求b1、b2、b3、b4的值;

(2) 求数列{bn}的通项公式及数列{anbn}的前n项和Sn。

解法一:

(I)

(II)因 ,

故猜想

因 ,(否则将 代入递推公式会导致矛盾)。

故 的等比数列.

,

解法二:

(Ⅰ)由

整理得

(Ⅱ)由

所以

由 得

解法三:

(Ⅰ)同解法一

(Ⅱ)

从而

23. (05年重庆卷)数列{an}满足 .

(Ⅰ)用数学归纳法证明: ;

(Ⅱ)已知不等式 ,其中无理数e=2.71828….

(Ⅰ)证明:(1)当n=2时, ,不等式成立.

(2)假设当 时不等式成立,即

那么 . 这就是说,当 时不等式成立.

根据(1)、(2)可知: 成立.

(Ⅱ)证法一:

由递推公式及(Ⅰ)的结论有

两边取对数并利用已知不等式得

上式从1到 求和可得

(Ⅱ)证法二:

由数学归纳法易证 成立,故

取对数并利用已知不等式得

上式从2到n求和得

故 成立

24. (05年江西卷)已知数列{an}的前n项和Sn满足Sn-Sn-2=3 求数列{an}的通项公式.

解:方法一:先考虑偶数项有:

………

同理考虑奇数项有:

………

综合可得

方法二:因为

两边同乘以 ,可得:

所以

………

25. (05年江西卷)

已知数列

(1)证明

(2)求数列 的通项公式an.

解:(1)方法一 用数学归纳法证明:

1°当n=1时,

∴ ,命题正确.

2°假设n=k时有

∴ 时命题正确.

由1°、2°知,对一切n∈N时有

方法二:用数学归纳法证明:

1°当n=1时, ∴ ;

2°假设n=k时有 成立,

令 , 在[0,2]上单调递增,所以由假设

有: 即

也即当n=k+1时 成立,所以对一切

(2)下面来求数列的通项: 所以

,

又bn=-1,所以

26、(04年全国卷四文18).已知数列{ }为等比数列, (Ⅰ)求数列{ }的通项公式;

(Ⅱ)设 是数列{ }的前 项和,证明

解:(I)设等比数列{an}的公比为q,则a2=a1q, a5=a1q4. 依题意,得方程组a1q=6, a1q4=162.解此方程组,得a1=2, q=3.故数列{an}的通项公式为an=2?3n-1

(II)

27、(04年全国三文⒆)设公差不为零的等差数列{an},Sn是数列{an}的前n项和,且 , ,求数列{an}的通项公式.

解:设数列{an}的公差为d(d≠0),首项为a1,由已知得: .解之得: , 或 (舍)

28(04年全国卷三理(22))已知数列{an}的前n项和Sn满足:Sn=2an +(-1)n,n≥1.⑴写出求数列{an}的前3项a1,a2,a3;

⑵求数列{an}的通项公式;⑶证明:对任意的整数m>4,有

解:⑴当n=1时,有:S1=a1=2a1+(-1) a1=1;当n=2时,有:S2=a1+a2=2a2+(-1)2 a2=0;

当n=3时,有:S3=a1+a2+a3=2a3+(-1)3 a3=2;综上可知a1=1,a2=0,a3=2;

⑵由已知得: ,化简得:

上式可化为: ,故数列{ }是以 为首项, 公比为2的等比数列.故 ∴

数列{ }的通项公式为:

⑶由已知得:

. 故 ,( m>4)

29、(04年天津卷文20. )设 是一个公差为 的等差数列,它的前10项和 且 , , 成等比数列。(1)证明 ;(2)求公差 的值和数列 的通项公式

证明:因 , , 成等比数列,故 ,而 是等差数列,有 ,

于是 ,即 ,化简得

(2)解:由条件 和 ,得到 ,由(1), ,代入上式得 ,故 , ,

30(04年浙江卷文(17))、已知数列 的前n项和为 (Ⅰ)求 ;(Ⅱ)求证数列 是等比数列

解: (Ⅰ)由 ,得 ,∴ ,又 ,即 ,得 .(Ⅱ)当n>1时, 得 所以 是首项 ,公比为 的等比数列

31(04年广东卷17). 已知 成公比为2的等比数列( 也成等比数列. 求 的值

解:∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α,∵sinα,sinβ,sinγ成等比数列

当cosα=1时,sinα=0,与等比数列的首项不为零,故cosα=1应舍去,

32(04年湖南文20). 已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4 成等差数列.(I)证明 12S3,S6,S12-S6成等比数列;(II)求和Tn=a1+2a4+3a7+…+na3n

(Ⅰ)证明 由 成等差数列, 得 ,即 变形得 所以 (舍去).由

所以12S3,S6,S12-S6成等比数列

(Ⅱ)解:

即 ①

①× 得:

所以

33、(04年江苏卷20).设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项 32 ,公差 ,求满足 的正整数k;(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有 成立

解:(1) ;(2) 或 或

34(04年全国卷一理15).已知数列{an},满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项

( 答案 )

35(04年全国卷一理22).已知数列 ,且a2k=a2k-1+(-1)K, a2k+1=a2k+3k, 其中k=1,2,3,…….

(I)求a3, a5;(II)求{ an}的通项公式

解:(I)a2=a1+(-1)1=0,a3=a2+31=3. a4=a3+(-1)2=4, a5=a4+32=13, 所以,a3=3,a5=13.

(II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k, 同理a2k-1-a2k-3=3k-1+(-1)k-1,

……a3-a1=3+(-1).

所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],

由此得a2k+1-a1= (3k-1)+ [(-1)k-1],于是a2k+1=

a2k= a2k-1+(-1)k= (-1)k-1-1+(-1)k= (-1)k=1

{an}的通项公式为: 当n为奇数时,an?= 当n为偶数时,

36(04年全国卷一文17). 等差数列{ }的前n项和记为Sn.已知

(Ⅰ)求通项 ;(Ⅱ)若Sn=242,求n

解:(Ⅰ)由 得方程组 解得

所以 (Ⅱ)由 得方程

解得

37(04年全国卷二理(19))、数列{an}的前n项和记为Sn,已知a1=1,an+1= Sn(n=1,2,3,…)

证明:(Ⅰ)数列{ }是等比数列;(Ⅱ)Sn+1=4an

证(I)由a1=1,an+1= Sn(n=1,2,3,…),知a2= S1=3a1, , ,∴

又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn= Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故数列{ }是首项为1,公比为2的等比数列

证(II) 由(I)知, ,于是Sn+1=4(n+1)? =4an(n )

又a2=3S1=3,则S2=a1+a2=4=4a1,因此对于任意正整数n≥1都有Sn+1=4an

38(04年全国卷二文(17))、已知等差数列{an},a2=9,a5 =21

(Ⅰ)求{an}的通项公式;(Ⅱ)令bn= ,求数列{bn}的前n项和Sn

解:a5-a2=3d,d=4,an=a2+(n-2)d=9+4(n-2)=4n+1;{bn}是首项为32公比为16的等比数列,Sn= .

北京今年数学高考并不是很难。

原因分析:

北京高考数学试卷总体来说难度在考生所能接受的范围之内,2023北京高考试卷题型特点一是举例问题灵活开放,考察考生想象能力,有多组正确答案,有多种解题方案可供选择。

2023北京高考数学和上年北京市高考数学试题对比,无论是以考卷构造,或是考试试题和难度系数上看来,基本上都维持了一致,题目和上年差别并不大。

考试科目:

考试科目普通高中课程方案所设定的科目均列入高中学业水平考试范围,考试设置语文、数学、外语、思想政治、历史、地理、物理、化学、生物、体育与健康、艺术(音乐、美术)、信息技术、通用技术13门科目。

考试阅卷:

普通高考的阅卷是实施网上阅卷的方法,当考试结束的时候,省教育考试院将试卷答题卡全部收集起来,先召开阅卷大会,然后将在指定的一所普通高校内的计算机办公大楼组织人员展开阅卷。

考场规则:

1、证件检查

每科考前45分钟,考生凭准考证、二代身份证在考场前门入口处排队等候,并依次进入考场在视频监控下自觉接受监考员的安全检查、人脸或指纹验证后对号入座,并将准考证、二代身份证放在课桌的左(或右)上方,以便查验。

2、答题卡填写

领到答题卡和试卷后,应在指定位置和规定时间内准确、清晰地填涂姓名、准考证号等。凡漏填、错填或书写字迹不清的答卷、答题卡影响评卷结果的,责任由考生自负。

遇试卷、答题卡分发错误及试题字迹不清、重印、漏印或缺页等问题,可举手询问,在开考前报告监考员。

3、考试时间规定

开考15分钟后(有听力考试的外语科目14:45开始禁止考生进入考场)禁止考生进入考点参加当次科目考试,交卷出场时间原则上不得早于本场考试结束前30分钟,交卷出场后不得再进场续考,也不得在考场附近逗留或交谈。

文章标签: # 数列 # an # 等比数列