您现在的位置是: 首页 > 教育趋势 教育趋势

云南高考数学试卷及答案_高考云南数学解析

tamoadmin 2024-06-07 人已围观

简介1.求2012云南高考数学试卷及答案2.高考数学第11、12题3.云南2023高考数学考什么卷云南2011年高考数学(理)试题及答案本试卷分选择题和非选择题两部分,满分为150分。考试用时120分钟。注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B铅笔将自己的学号填涂在答题卡上。2、选择题每小题选出答案后,用2B铅笔把答题卡上对

1.求2012云南高考数学试卷及答案

2.高考数学第11、12题

3.云南2023高考数学考什么卷

云南高考数学试卷及答案_高考云南数学解析

云南2011年高考数学(理)试题及答案本试卷分选择题和非选择题两部分,满分为150分。考试用时120分钟。

注意事项:

1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和学号填写在答题卡和答卷密封线内相应的位置上,用2B铅笔将自己的学号填涂在答题卡上。

2、选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上。

3、非选择题必须用黑色字迹的钢笔或签字笔在答卷纸上作答,答案必须写在答卷纸各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁和平整。

 云南2011年全国卷2011高考数学(理)选择题答案

style="font-size: 18px;font-weight: bold;border-left: 4px solid #a10d00;margin: 10px 0px 15px 0px;padding: 10px 0 10px 20px;background: #f1dada;">求2012云南高考数学试卷及答案

2020年高考试卷难度备受大家关注,那么2020年云南津高考数学难不难呢?下面就和我一起去看一下相关信息吧,希望可以给大家带来参考!

2020年云南高考数学难度怎么样

全国Ⅲ卷文、理科第4题以新冠肺炎疫情传播的动态研究为背景,选择适合学生知识水平的Logistic模型作为试题命制的基础,考查学生对指数函数基本知识的理解和掌握,以及使用数学模型解决实际问题的能力。

以上点评及相关分析来源:中国教育在线,仅供参考,如若侵权请联系2855046843@qq.com。

高考数学第11、12题

哥们,数学是文科还是理科啊,怎么不说明白啊!

2012年普通高等学校招生全国统一考试

文科数学

第Ⅰ卷

一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x|x2-x-2<0},B={x|-1<x<1},则

(A)A?B(B)B?A(C)A=B(D)A∩B=?

(2)复数z=-3+i2+i的共轭复数是?

(A)2+i(B)2-i(C)-1+i(D)-1-i

3、在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=12x+1上,则这组样本数据的样本相关系数为?

(A)-1(B)0(C)12(D)1

(4)设F1、F2是椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为()

(A)12(B)23(C)34(D)45

5、已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则z=-x+y的取值范围是

(A)(1-3,2)?(B)(0,2)?(C)(3-1,2)(D)(0,1+3)

(6)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则

(A)A+B为a1,a2,…,aN的和

(B)A+B2为a1,a2,…,aN的算术平均数

(C)A和B分别是a1,a2,…,aN中最大的数和最小的数

(D)A和B分别是a1,a2,…,aN中最小的数和最大的数

(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为

(A)6

(B)9?

(C)12

(D)18

(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为?

(A)6π(B)43π(C)46π(D)63π

(9)已知ω>0,0<φ<π,直线x=π4和x=5π4是函数f(x)=sin(ωx+φ)图像的两条相邻的对称轴,则φ=

(A)π4(B)π3?(C)π2?(D)3π4

(10)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=43,则C的实轴长为

(A)2?(B)22?(C)4(D)8

(11)当0<x≤12时,4x<logax,则a的取值范围是?

(A)(0,22)(B)(22,1)?(C)(1,2)(D)(2,2)

(12)数列{an}满足an+1+(-1)n?an?=2n-1,则{an}的前60项和为

(A)3690?(B)3660?(C)1845(D)1830

第Ⅱ卷

本卷包括必考题和选考题两部分。第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。

二.填空题:本大题共4小题,每小题5分。

(13)曲线y=x(3lnx+1)在点(1,1)处的切线方程为________

(14)等比数列{an}的前n项和为Sn,若S3+3S2=0,则公比q=_______

(15)已知向量a,b夹角为45°?,且|a|=1,|2a-b|=10,则|b|=

(16)设函数f(x)=(x+1)2+sinxx2+1的最大值为M,最小值为m,则M+m=____

三、解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)

已知a,b,c分别为△ABC三个内角A,B,C的对边,c?=?3asinC-ccosA

(1) 求A

(2) 若a=2,△ABC的面积为3,求b,c

18.(本小题满分12分)

某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。?

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n 14 15 16 17 18 19 20

频数 10 20 16 16 15 13 10

(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;

(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。

(19)(本小题满分12分)

如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点

(I)证明:平面BDC1⊥平面BDC

(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比。

(20)(本小题满分12分)

设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点。

(I)若∠BFD=90°,△ABD的面积为42,求p的值及圆F的方程;

(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值。

(21)(本小题满分12分)

设函数f(x)=?ex-ax-2

(Ⅰ)求f(x)的单调区间

(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)?f?(x)+x+1>0,求k的最大值

请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。

(22)(本小题满分10分)选修4-1:几何证明选讲

如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF//AB,证明:?

(Ⅰ)CD=BC;

(Ⅱ)△BCD∽△GBD

(23)(本小题满分10分)选修4—4;坐标系与参数方程

已知曲线C1的参数方程是x=2cosφy=3sinφ(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为(2,π3)

(Ⅰ)求点A、B、C、D?的直角坐标;

(Ⅱ)设P为C1上任意一点,求|PA|?2+?|PB|2?+?|PC|?2+?|PD|2的取值范围。

(24)(本小题满分10分)选修4—5:不等式选讲

已知函数f(x)?=?|x?+?a|?+?|x-2|.

(Ⅰ)当a?=-3时,求不等式f(x)≥3的解集;

(Ⅱ)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围。

云南2023高考数学考什么卷

 数学(文科)  整体难度稳中有降  今年是云南省大纲教材最后一年高考,数学全国试卷(文科)的整体难度稳中有降,无偏、难、怪题出现,本套题所用知识和方法较为常规,延续以前试题格式,解答题与2010年相比较数列调整为第17题。  客观题中,前6题都是常见题,稍加计算就能作出选择,在考场上能够稳定学生情绪,让他们较快进入考试状态,达到思维的巅峰;第7、8、9、10四题涉及到一定的思维量、运算量,但仍然为常规题型;第11、12题需要学生有正确的作图能力和空间想象能力。第13、14、15三个填空题考查二项式定理、三角函数求值、正方体中的线线角计算,第16题涉及角平分定理,注重解析几何与平面几何的结合。  主观题试题类型都是常规题,第17题是等比数列题,只要学生用方程组思想即可完成;第18题是解三角形题,利用正弦和余弦定理完成边角转化即可解答问题;第19题是概率题,背景学生容易理解,学生完成不应该有太大困难;第20题是立体几何题,以四棱锥为载体考查线面垂直证明和线面角的计算,注重与平面几何的综合,学生完成会有一定的障碍;第21题是导数,以三次函数为载体,学生易入手,第一问涉及导数的几何意义,第二问与函数的极值有关;第22题是解析几何,条件中涉及到平面向量,有一定的综合性和计算量,完成解答有难度。  总体看来,这套试题结构是由易到难,梯度把握比较好,有利于各类考生的发展。同时,试题遵循了科学性、公平性、规范性的原则,彰显了时代精神,达到了平稳过渡的目的,为新课标的高考进行了良好的铺垫。  数学(理科)  前八道客观题属常见题  今年数学全国试卷(理科)的整体难度稳中有降,本套题知识分布较广,延续以前试题格式,解答题基本上还是以前的固定内容。其中,第22题(2)问题型较偏,学生难以完成解答。  客观题中,前8题都是常见题,在考场上能够稳定学生情绪,让他们很快进入考试状态,第9、10、11三道题是较为综合性的试题,第12题涉及数形结合的思想。第13、14、15、16四个填空题问题不大,第15题涉及角平分定理及双曲线定义的应用,第16题为立体几何中二面角的计算,但载体为正方体,学生易完成。  主观题试题类型都是常规题。第17题考查解斜三角形,利用正弦定理实现边角转化,完成角的计算;第18题考查保险背景下的概率问题,只要学生能正确理解题意就可得到解题方法;第19题是立体几何题,常规解法和向量法都可以,但用向量法时点S坐标学生不易找出,给学生解题带来一定的难度;第20题是数列,第一问只需学生直接使用等差数列的定义即可,第二问要用裂项相消,但使用了求和符号,可能有学生忘记了这个符号;第21题是解析几何,思路不难,有一定的计算量;第22题是导数题,第一问是不等式转化为单调性和极值问题,简单;但第二问是概率下的不等式问题,多数学生无法入手。

云南2023高考数学考全国甲卷。使用全国甲卷的省份有:云南、四川、广西、贵州、西藏。

关于云南高考的具体情况:

1、考试科目:语文、数学、外语(教育部统一命题)+文科综合或理科综合(教育部统一命题)“2种选择”。

2、计分及总分:语文、数学、外语(各科目卷面满分150分)总分450分按原始分计入总分+文科综合或理科综合卷面满分300分按原始分计入总分,共750分。

3、投档录取:按文科、理科分列计划、分开划线、分别投档。

根据往年高考查分时间,云南省2023年高考成绩公布时间预计为6月23日左右,不过具体的时间以官方发布为准。出成绩后根据排名对照往年各大高校录取排名进行填报志愿。每人可以填几个大学,每个学校可以填6个专业。

填报志愿时提前了解高校的录取情况潜规则,有的大学会根据志愿填报的顺序减分。比如某大学的去年录取线为580分,但是考生将其填在第二志愿上可能会在考生分数降5分在做考虑。但是此情况极少,祝愿考生能被心仪学校录取。

文章标签: # 高考 # 数学 # 学生