您现在的位置是: 首页 > 教育趋势 教育趋势

高考数学答案二卷2020_高考数学2卷答案

tamoadmin 2024-06-07 人已围观

简介1.跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案2.求08年江苏数学高考试卷 word 版(带答案)3.2011年普通高等学校招生全国统一考试(全国卷一)数学答案 ...急急急急急急急急4.北京卷高考数学试卷及答案解析2022年5.谁有09年福建省理科高考数学卷的选择题及答案。6.2023年新高考2卷数学难吗我兴奋的找出我06年留下的高考答案,结果发现数学是全国1的,晕啦

1.跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案

2.求08年江苏数学高考试卷 word 版(带答案)

3.2011年普通高等学校招生全国统一考试(全国卷一)数学答案 ...急急急急急急急急

4.北京卷高考数学试卷及答案解析2022年

5.谁有09年福建省理科高考数学卷的选择题及答案。

6.2023年新高考2卷数学难吗

高考数学答案二卷2020_高考数学2卷答案

我兴奋的找出我06年留下的高考答案,结果发现数学是全国1的,晕啦!!

第一问很容易,随便算了一下A1=1/2,A2=1/6;

第二个问常规思路:

把(Sn-1)带入方程,得Sn的平方-(2+An)Sn+1=0;求出Sn(用An来表示)

然后用Sn-S(n-1)=(相减的结果)=An,应该能求出An

数学归纳法:

由A1,A2猜想An=1/n(n+1)

假设 n=1,k,k+1 自己慢慢算吧,这题其实不难,现在高考数学的最后一天往往不是最难得了,所以在高考的时候千万不要看都不看最后一题。

跪求2004~2009年高考全国二卷数学,语文,英语,理综的试题及答案

2023新高考2卷数学难度与历史经验相比基本持平,但多选题难度较大。

2023年在高考命题将会有相应的调整。当中有一项比较重要的内容就是:为了能让新高考省份实现平稳过渡,确保这些省份的考生能够适应新高考的内容,促进高考试题的平稳,坚决不能出现偏题和怪题,也不能出现超纲内容。相关负责人还表示,未来高考命题会局限在课本的主干知识和重点知识,避免出现冷门知识或者超纲知识。

2023年高考数学难度趋势:

2022年新高考1卷的数学题目是很难的,引发了网友们的热议,也让一些高考生没能在考试中取得理想的成绩。按照教育部对于出题的要求,2023年的高考难度大概率会保持目前的趋势,难度不会大幅提升,但也不会比2022年简单太多。

1、首先,依照教育部的要求,高考数学题目可能会与现实中的复杂场景结合。这就要求考生不但具备出色的逻辑推理、计算能力,也对同学们的阅读能力、理解能力提出了很高的要求,做到举一反三是非常重要的。题目的灵活度增加,数学基础如果不够扎实可能会觉得很难,但如果应用能力强,也可能会觉得题目不难。

2、其次,对于数学的考察会更强调数学思想和方法。这就要求同学们在学习过程中掌握数学的核心,如逻辑思维能力、计算能力等。务必要吃透每一个方法,如果解题的时候总是一知半解、似懂非懂,高考的时候很可能会吃苦头。

综合以上,2023年的高考和2022年对比起来差异不会太大,可能难度稍有提升。所以同学们在最后的几个月时间里一定要回归课本,把考纲内的数学基础知识掌握牢固,提升自己举一反三的能力,不必纠结一些难题和偏题。

求08年江苏数学高考试卷 word 版(带答案)

呵呵,楼上的是全国一卷的,而且只有数学卷,我帮楼主找找吧,但是现在网速慢,打不开网页,破电信!!!

等晚上我找到了整理好发给楼主啊,收到了请采纳哦...

PS:本是二楼的哈,楼主,现在我已经发给你了,来自7544.......全国二卷语数外理综.

做人要厚道,满意请采纳!!!!!!!!!!

2011年普通高等学校招生全国统一考试(全国卷一)数学答案 ...急急急急急急急急

绝密★启用前

2008年普通高等学校招生全国统一考试(江苏卷)

数 学

本试卷分第I卷(填空题)和第II卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的

准考证号、姓名,并将条形码粘贴在指定位置上.

2.选择题答案使用2B

铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择

题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.

4.保持卡面清洁,不折叠,不破损.

5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.

参考公式:

样本数据 , , , 的标准差

其中 为样本平均数

柱体体积公式

其中 为底面积, 为高

一、填空题:本大题共1小题,每小题5分,共70分.

1. 的最小正周期为 ,其中 ,则 = ▲ .

解析本小题考查三角函数的周期公式.

答案10

2.一个骰子连续投2 次,点数和为4 的概率 ▲ .

解析本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故

答案

3. 表示为 ,则 = ▲ .

解析本小题考查复数的除法运算.∵ ,∴ =0, =1,因此

答案1

4.A= ,则A Z 的元素的个数 ▲ .

解析本小题考查集合的运算和解一元二次不等式.由 得 ,∵Δ<0,∴集合A 为 ,因此A Z 的元素不存在.

答案0

5. , 的夹角为 , , 则 ▲ .

解析本小题考查向量的线性运算.

= , 7

答案7

6.在平面直角坐标系 中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 ▲ .

解析本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此.

答案

7.算法与统计的题目

8.直线 是曲线 的一条切线,则实数b= ▲ .

解析本小题考查导数的几何意义、切线的求法. ,令 得 ,故切点(2,ln2),代入直线方程,得,所以b=ln2-1.

答案ln2-1

9在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程: ,请你求OF的方程:

( ▲ ) .

解析本小题考查直线方程的求法.画草图,由对称性可猜想填 .事实上,由截距式可得直线AB: ,直线CP: ,两式相减得 ,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.

答案

10.将全体正整数排成一个三角形数阵:

1

2 3

4 5 6

7 8 9 10

. . . . . . .

按照以上排列的规律,第n 行(n ≥3)从左向右的第3 个数为 ▲ .

解析本小题考查归纳推理和等差数列求和公式.前n-1 行共有正整数1+2+…+(n-1)个,即 个,因此第n 行第3 个数是全体正整数中第 +3个,即为 .

答案

11.已知 , ,则 的最小值 ▲ .

解析本小题考查二元基本不等式的运用.由 得 ,代入 得

,当且仅当 =3 时取“=”.

答案3

12.在平面直角坐标系中,椭圆 1( 0)的焦距为2,以O为圆心, 为半径的圆,过点 作圆的两切线互相垂直,则离心率 = ▲ .

解析设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以△OAP 是等腰直角三角形,故 ,解得 .

答案

13.若AB=2, AC= BC ,则 的最大值 ▲ . ?

解析本小题考查三角形面积公式、余弦定理以及函数思想.设BC= ,则AC= ,

根据面积公式得 = ,根据余弦定理得

,代入上式得

=

由三角形三边关系有 解得 ,

故当 时取得 最大值

答案

14. 对于 总有 ≥0 成立,则 = ▲ .

解析本小题考查函数单调性的综合运用.若x=0,则不论 取何值, ≥0显然成立;当x>0 即 时, ≥0可化为,

设 ,则 , 所以 在区间 上单调递增,在区间 上单调递减,因此 ,从而 ≥4;

当x<0 即 时, ≥0可化为 ,

在区间 上单调递增,因此 ,从而 ≤4,综上 =4

答案4

二、解答题:解答应写出文字说明,证明过程或演算步骤.

15.如图,在平面直角坐标系 中,以 轴为始边做两个锐角 , ,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为 .

(Ⅰ)求tan( )的值;

(Ⅱ)求 的值.

解析本小题考查三角函数的定义、两角和的正切、二倍角的正切公式.

由条件的 ,因为 , 为锐角,所以 =

因此

(Ⅰ)tan( )=

(Ⅱ) ,所以

∵ 为锐角,∴ ,∴ =

16.在四面体ABCD 中,CB= CD, AD⊥BD,且E ,F分别是AB,BD 的中点,

求证:(Ⅰ)直线EF ‖面ACD ;

(Ⅱ)面EFC⊥面BCD .

解析本小题考查空间直线与平面、平面与平面的位置关系的判定.

(Ⅰ)∵ E,F 分别是AB,BD 的中点,

∴EF 是△ABD 的中位线,∴EF‖AD,

∵EF 面ACD ,AD 面ACD ,∴直线EF‖面ACD .

(Ⅱ)∵ AD⊥BD ,EF‖AD,∴ EF⊥BD.

∵CB=CD, F 是BD的中点,∴CF⊥BD.

又EF CF=F,∴BD⊥面EFC.∵BD 面BCD,∴面EFC⊥面BCD .

17.某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB=20km,

CB =10km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且A,B 与等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为 km.

(Ⅰ)按下列要求写出函数关系式:

①设∠BAO= (rad),将 表示成 的函数关系式;

②设OP (km) ,将 表示成x 的函数关系式.

(Ⅱ)请你选用(Ⅰ)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.

解析本小题主要考查函数最值的应用.

(Ⅰ)①由条件知PQ 垂直平分AB,若∠BAO= (rad) ,则 , 故

,又OP= 10-10ta ,

所以 ,

所求函数关系式为

②若OP= (km) ,则OQ=10- ,所以OA =OB=

所求函数关系式为

(Ⅱ)选择函数模型①,

令 0 得sin ,因为 ,所以 = ,

当 时, , 是 的减函数;当 时, , 是 的增函数,所以当 = 时, 。这时点P 位于线段AB 的中垂线上,且距离AB 边

km处。

18.设平面直角坐标系 中,设二次函数 的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:

(Ⅰ)求实数b 的取值范围;

(Ⅱ)求圆C 的方程;

(Ⅲ)问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论.

解析本小题主要考查二次函数图象与性质、圆的方程的求法.

(Ⅰ)令 =0,得抛物线与 轴交点是(0,b);

令 ,由题意b≠0 且Δ>0,解得b<1 且b≠0.

(Ⅱ)设所求圆的一般方程为

令 =0 得 这与 =0 是同一个方程,故D=2,F= .

令 =0 得 =0,此方程有一个根为b,代入得出E=―b―1.

所以圆C 的方程为 .

(Ⅲ)圆C 必过定点(0,1)和(-2,1).

证明如下:将(0,1)代入圆C 的方程,得左边=0 +1 +2×0-(b+1)+b=0,右边=0,

所以圆C 必过定点(0,1).

同理可证圆C 必过定点(-2,1).

19.(Ⅰ)设 是各项均不为零的等差数列( ),且公差 ,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:

①当n =4时,求 的数值;②求 的所有可能值;

(Ⅱ)求证:对于一个给定的正整数n(n≥4),存在一个各项及公差都不为零的等差数列 ,其中任意三项(按原来顺序)都不能组成等比数列.

解析本小题主要考查等差数列与等比数列的综合运用.

(Ⅰ)①当n=4 时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0.

若删去 ,则有 即

化简得 =0,因为 ≠0,所以 =4 ;

若删去 ,则有 ,即 ,故得 =1.

综上 =1或-4.

②当n=5 时, 中同样不可能删去首项或末项.

若删去 ,则有 = ,即 .故得 =6 ;

若删去 ,则 = ,即 .

化简得3 =0,因为d≠0,所以也不能删去 ;

若删去 ,则有 = ,即 .故得 = 2 .

当n≥6 时,不存在这样的等差数列.事实上,在数列 , , ,…, , , 中,

由于不能删去首项或末项,若删去 ,则必有 = ,这与d≠0 矛盾;同样若删

去 也有 = ,这与d≠0 矛盾;若删去 ,…, 中任意一个,则必有

= ,这与d≠0 矛盾.

综上所述,n∈{4,5}.

(Ⅱ)略

20.若 , , 为常数,

(Ⅰ)求 对所有实数成立的充要条件(用 表示);

(Ⅱ)设 为两实数, 且 ,若

求证: 在区间 上的单调增区间的长度和为 (闭区间 的长度定义为 ).

解析本小题考查充要条件、指数函数与绝对值函数、不等式的综合运用.

(Ⅰ) 恒成立

(*)

因为

所以,故只需 (*)恒成立

综上所述, 对所有实数成立的充要条件是:

(Ⅱ)1°如果 ,则的图象关于直线 对称.因为 ,所以区间 关于直线 对称.

因为减区间为 ,增区间为 ,所以单调增区间的长度和为

2°如果 .

(1)当 时. ,

当 , 因为 ,所以 ,

故 =

当 , 因为 ,所以

故 =

因为 ,所以 ,所以 即

当 时,令 ,则 ,所以 ,

当 时, ,所以 =

时, ,所以 =

在区间 上的单调增区间的长度和

=

(2)当 时. ,

当 , 因为 ,所以 ,

故 =

当 , 因为 ,所以

故 =

因为 ,所以 ,所以

当 时,令 ,则 ,所以 ,

当 时, ,所以 =

时, ,所以 =

在区间 上的单调增区间的长度和

=

综上得 在区间 上的单调增区间的长度和为

北京卷高考数学试卷及答案解析2022年

2011年高考题全国卷II数学试题·理科全解全析

科目: 数学 试卷名称 2011年普通高等学校招生全国统一考试·全国卷II(理科)

知识点检索号

新课标

题目及解析

(1)复数 , 为 的共轭复数,则

(A) (B) (C) (D)

思路点拨先求出的 共轭复数,然后利用复数的运算法则计算即可。

精讲精析选B. .

(2)函数 的反函数为

(A) (B)

(C) (D)

思路点拨先反解用y表示x,注意要求出y的取值范围,它是反函数的定义域。

精讲精析选B.在函数 中, 且反解x得 ,所以 的反函数为 .

(3)下面四个条件中,使 成立的充分而不必要的条件是

(A) (B) (C) (D)

思路点拨本题要把充要条件的概念搞清,注意寻找的是通过选项能推出a>b,而由a>b推不出选项的选项.

精讲精析选A.即寻找命题P使P 推不出P,逐项验证可选A。

(4)设 为等差数列 的前 项和,若 ,公差 , ,则

(A)8 (B)7 (C)6 (D)5

思路点拨思路一:直接利用前n项和公式建立关于k的方程解之即可。思路二:

利用 直接利用通项公式即可求解,运算稍简。

精讲精析选D.

(5)设函数 ,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,则 的最小值等于

(A) (B) (C) (D)

思路点拨此题理解好三角函数周期的概念至关重要,将 的图像向右平移 个单位长度后,所得的图像与原图像重合,说明了 是此函数周期的整数倍。

精讲精析选C. 由题 ,解得 ,令 ,即得 .

(6)已知直二面角 ,点 ,C为垂足, 为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于

(A) (B) (C) (D) 1

思路点拨本题关键是找出或做出点D到平面ABC的距离DE,根据面面垂直的性质不难证明 平面 ,进而 平面ABC,所以过D作 于E,则DE就是要求的距离。

精讲精析选C.

如图,作 于E,由 为直二面角, 得 平面 ,进而 ,又 ,于是 平面ABC,故DE为D到平面ABC的距离。

在 中,利用等面积法得 .

(7)某同学 有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有

(A)4种 (B)10种 (C)18种 (D)20种

思路点拨本题要注意画册相同,集邮册相同,这是重复元素,不能简单按照排列知识来铸。所以要分类进行求解。

精讲精析选B.分两类:取出的1本画册,3本集邮册,此时赠送方法有 种;取出的2本画册,2本集邮册,此时赠送方法有 种。总的赠送方法有10种。

(8)曲线y= +1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为

(A) (B) (C) (D)1

思路点拨利用导数求出点(0,2)切线方程然后分别求出与直线y=0与y=x的交点问题即可解决。

精讲精析选A. 切线方程是: ,在直角坐标系中作出示意图,即得 。

(9)设 是周期为2的奇函数,当0 ≤x≤1时, = ,则 =

(A) - (B) (C) (D)

思路点拨解本题的关键是把通过周期性和奇偶性把自变量 转化到区间[0,1]上进行求值。

精讲精析选A.

先利用周期性,再利用奇偶性得: .

(10)已知抛物线C: 的焦点为F,直线 与C交于A,B两点 .则 =

(A) (B) (C) (D)

思路点拨方程联立求出A、B两点后转化为解三角形问题。

精讲精析选D.

联立 ,消y得 ,解得 .

不妨设A在x轴上方,于是A,B的坐标分别为(4,4),(1,-2),

可求 ,利用余弦定理 .

(11)已知平面α截一球面 得圆M,过圆心M且与α成 二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4 ,则圆N的面积为

(A)7 (B)9 (C)11 (D)13

思路点拨做出如图所示的图示,问题即可解决。

精讲精析选B.

作示意图如,由圆M的面积为4 ,易得 ,

中, 。

故 .

(12)设向量 满足 ,则 的最大值等于

(A)2 (B) (c) (D)1

思路点拨本题按照题目要求构造出如右图所示的几何图形,然后分析观察不难得到当线段AC为直径时, 最大.

精讲精析选A.如图,构造

所以A、B、C、D四点共圆,分析可知当线段AC为直径时, 最大,最大值为2.

(13)(1- )20的二项展开式中,x的系数与x9的系数之差为: .

思路点拨解本题一个掌握展开式的通项公式,另一个要注意 .

精讲精析0. 由 得 的系数为 , x9的系数为 ,而 .

(14)已知a∈( , ),sinα= ,则tan2α=

思路点拨本题涉及到同角三角函数关系式,先由正弦值求出余弦值一定要注意角的范围,再求出正切值,最后利用正切函数的倍角公式即可求解。

精讲精析 .由a∈( , ),sinα= 得 ,

.

(15)已知F1、F2分别为双曲线C: - =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2的平分线.则|A F2| = .

思路点拨本题用内角平分线定理及双曲线的定义即可求解。

精讲精析6.

由角平分线定理得: ,故 .

(16)己知点E、F分别在正方体ABCD-A1B2C3D4的棱BB 1 、CC1上,且B1E=2EB, CF=2FC1,则面AEF与面ABC所成的二面角的正切值等于 .

思路点拨本题应先找出两平面的交线,进而找出或做出二面角的平面角是解决此问题的关键,延长EF必与BC相交,交点为P,则AP为面AEF与面ABC的交线.

精讲精析 .延长EF交BC的延长线于P,则AP为面AEF与面ABC的交线,因为 ,所以 为面AEF与面ABC所成的二面角的平面角。

(17)(本小题满分l0分)(注意:在试题卷上作答无效)

△ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,a+c= b,求C.

思路点拨解决本题的突破口是利用正弦定理把边的关系转化为角的正弦的关系,然后再结合A—C=90°,得到 .即可求解。

精讲精析选D.由 ,得A为钝角且 ,

利用正弦定理, 可变形为 ,

即有 ,

又A、B、C是 的内角,故

或 (舍去)

所以 。

所以 .

(18)(本小题满分12分)(注意:在试题卷上作答无效)

根据以往统计资料,某地车主购买甲种 保险 的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立

(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;

(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。 思路点拨解本题应首先主出该车主购买乙种保险的概率为p,利用乙种保险但不购买甲种保险的概率为0.3,即可求出p=0.6.然后(ii)利用相互独立事件的概率计算公式和期望公式计算即可.

精讲精析设该车主购买乙种保险的概率为p,由题意知: ,解得 。

(I) 设所求概率为P1,则 .

故该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8。

(II) 对每位车主甲、乙两种保险都不购买的概率为 。

所以X的期望是20人。

(19)如图,四棱锥 中, , ,侧面 为等边三角形, .

(Ⅰ)证明: ;

(Ⅱ)求 与平面 所成角的大小.

思路点拨本题第(I)问可以直接证明,也可建系证明。

(II)建立空间直角坐标系,利用空间向量的坐标运算计算把求角的问题转化为数值计算问题,思路清晰思维量小。

精讲精析计算SD=1, ,于是 ,利用勾股定理,可知 ,同理,可证

又 ,

因此, .

(II)过D做 ,如图建立空间直角坐标系D-xyz,

A(2,-1,0),B(2,1,0),C(0,1,0),

可计算平面SBC的一个法向量是

.

所以AB与平面SBC所成角为 .

(20)设数列 满足 且

(Ⅰ)求 的通项公式;

(Ⅱ)设

思路点拨解本题突破口关键是由式子 得到 是等差数列,进而可求出数列 的通项公式.(II)问求出 的通项公式注意观察到能采用裂项相消的方式求和。

精讲精析 (I) 是公差为1的等差数列,

所以

(II)

.

(21)已知O为坐标原点,F为椭圆 在y轴正半轴上的焦点,过F且斜率为 的直线 与C交与A、B两点,点P满足

(Ⅰ)证明:点P在C上;

(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.

思路点拨方程联立利用韦达定理是解决这类问题的基本思路,注意把 用坐标表示后求出P点的坐标,然后再结合直线方程把P点的纵坐标也用A、B两点的横坐标表示出来。从而求出点P的坐标代入椭圆方程验证即可证明点P在C上。(II)此问题证明有两种思路:思路一:关键是证明 互补.通过证明这两个角的正切值互补即可,再求正切值时要注意利用倒角公式。

思路二:根据圆的几何性质圆心一定在弦的垂直平分线上,所以根据两条弦的垂直平分线的交点找出圆心N,然后证明N到四个点A、B、P、Q的距离相等即可.

精讲精析 (I)设

直线 ,与 联立得

由 得

,

所以点P在C上。

(II)法一:

同理

所以 互补,

因此A、P、B、Q四点在同一圆上。

法二:由 和题设知, ,PQ的垂直平分线 的方程为 …①

设AB的中点为M,则 ,AB的垂直平分线 的方程为 …②

由①②得 、 的交点为

,

, ,

故 .

所以A、P、B、Q四点在同一圆圆N上.

(22)(本小题满分12分)(注意:在试题卷上作答无效)

(Ⅰ)设函数 ,证明:当 时, ;

(Ⅱ)从编号1到100的100张卡片中每次随即抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为 .证明:

思路点拨本题第(I)问是利用导数研究单调性最值的常规题,不难证明。

第(II)问证明如何利用第(I)问结论是解决这个问题的关键也是解题能力高低的体现。

精讲精析(I)

所以 在 上单增。

当 时, 。

(II)

由(I),当x<0时, ,即有

于是 ,即 .

利用推广的均值不等式:

另解: ,

所以 是上凸函数,于是

因此

综上:

谁有09年福建省理科高考数学卷的选择题及答案。

多年来北京卷会在最后一题做大胆的创新。具体来说,北京卷的最后一题并不执着于具体的知识或 方法 ,而是通过全新的背景,考查一般意义下的数学素养。下面是我为大家收集的关于北京卷高考数学试卷及答案解析2022年。希望可以帮助大家。

北京卷高考数学试卷

北京卷高考数学答案解析

高中数学知识汇总

必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2

选修1--1:重点:高考占30分

1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)

选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)

理科:选修2—1、2—2、2—3

选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)

选修2--2:1、导数与微积分2、推理证明:一般不考3、复数

选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:

高考的知识板块

集合与简单逻辑:5分或不考

函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)

平面向量与解三角形

立体几何:22分左右

不等式:(线性规则)5分必考

数列:17分 (一道大题+一道选择或填空)易和函数结合命题

平面解析几何:(30分左右)

计算原理:10分左右

概率统计:12分----17分

复数:5分

推理证明

一般高考大题分布

1、17题:三角函数

2、18、19、20 三题:立体几何 、概率 、数列

3、21、22 题:函数、圆锥曲线

成绩不理想一般是以下几种情况:

做题不细心,(会做,做不对)

基础知识没有掌握

解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)

心理素质不好

总之学__数学一定要掌握科学的学__方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳 总结

北京卷高考数学试卷及答案解析2022年相关 文章 :

★ 2022全国甲卷高考数学文科试卷及答案解析

★ 2022年全国新高考II卷数学真题及答案

★ 2022高考全国乙卷试题及答案(理科)

★ 2022年新高考Ⅱ卷数学真题试卷及答案

★ 2022年新高考Ⅱ卷数学试题及答案解析

★ 2022年新高考Ⅰ卷数学真题试卷及答案

★ 2022高考甲卷数学真题试卷及答案

★ 2022高考全国甲卷文综试题及答案一览

★ 2022高考全国甲卷数学试题及答案

★ 全国新高考II卷2022英语试题及答案解析

2023年新高考2卷数学难吗

2009年普通高等学校招生全国统一考试(福建卷)

数学(理工农医类)

一. 选择题:本小题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 函数 最小值是

A.-1 B. C. D.1

1.答案:B

[解析]∵ ∴ .故选B

2.已知全集U=R,集合 ,则 等于

A. { x ∣0 x 2} B { x ∣0<x<2}

C. { x ∣x<0或x>2} D { x ∣x 0或x 2}

2.答案:A

[解析]∵计算可得 或 ∴ .故选A

3.等差数列 的前n项和为 ,且 =6, =4, 则公差d等于

A.1 B C.- 2 D 3

3.答案:C

[解析]∵ 且 .故选C

4. 等于

A. B. 2 C. -2 D. +2

4.答案:D

[解析]∵ .故选D

5.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 >

的是

A. = B. = C . = D

5.答案:A

[解析]依题意可得函数应在 上单调递减,故由选项可得A正确。

6.阅读右图所示的程序框图,运行相应的程序,输出的结果是w.w.w.k.s.5.u.c.o.m

A.2 B .4 C. 8 D .16

6.答案:C

[解析]由算法程序图可知,在n =4前均执行”否”命令,故n=2×4=8. 故选C

7.设m,n是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 // 的一个充分而不必要条件是w.w.w.k.s.5.u.c.o.m

A.m // 且l // B. m // l 且n // l

C. m // 且n // D. m // 且n // l

7.答案:B

[解析]若 ,则可得 .若 则存在

8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动

员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,

指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为

A.0.35 B 0.25 C 0.20 D 0.15

8.答案:B

[解析]由随机数可估算出每次投篮命中的概率 则三次投篮命中两次为 0.25故选B

9.设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,

a c ∣a∣=∣c∣,则∣b ? c∣的值一定等于w.w.w.k.s.5.u.c.o.m

A. 以a,b为两边的三角形面积 B 以b,c为两边的三角形面积

C.以a,b为邻边的平行四边形的面积 D 以b,c为邻边的平行四边形的面积

9.答案:C

[解析]依题意可得 故选C.

10.函数 的图象关于直线 对称。据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程 的解集都不可能是

A. B C D

10. 答案:D

[解析]本题用特例法解决简洁快速,对方程 中 分别赋值求出 代入 求出检验即得.

第二卷 (非选择题共100分)

二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。

11.若 (i为虚数单位, )则 _________ w.w.w.k.s.5.u.c.o.m

11. 答案:2

解析:由 ,所以 故 。

12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。若记分员计算无误,则数字 应该是___________

12. 答案:1

解析:观察茎叶图,

可知有 。

13.过抛物线 的焦点F作倾斜角为 的直线交抛物线于A、B两点,若线段AB的长为8,则 ________________ w.w.w.k.s.5.u.c.o.m

13. 答案:2

解析:由题意可知过焦点的直线方程为 ,联立有 ,又 。

14.若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.

14. 答案:

解析:由题意可知 ,又因为存在垂直于 轴的切线,

所以 。

15.五位同学围成一圈依序循环报数,规定:

①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;

②若报出的数为3的倍数,则报该数的同学需拍手一次

已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.

15. 答案:5

解析:由题意可设第 次报数,第 次报数,第 次报数分别为 , , ,所以有 ,又 由此可得在报到第100个数时,甲同学拍手5次。

三解答题w.w.w.k.s.5.u.c.o.m

16.(13分)

从集合 的所有非空子集中,等可能地取出一个。

(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;

(2) 记所取出的非空子集的元素个数为 ,求 的分布列和数学期望E

16、解:(1)记”所取出的非空子集满足性质r”为事件A

基本事件总数n= =31

事件A包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4}

事件A包含的基本事件数m=3

所以

(II)依题意, 的所有可能取值为1,2,3,4,5

又 , ,

故 的分布列为:

1 2 3 4 5

P

从而E +2 +3 +4 +5

17(13分)

如图,四边形ABCD是边长为1的正方形, ,

,且MD=NB=1,E为BC的中点

(1) 求异面直线NE与AM所成角的余弦值

(2) 在线段AN上是否存在点S,使得ES 平面AMN?若存在,求线段AS的长;若不存在,请说明理由w.w.w.k.s.5.u.c.o.m

17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标

依题意,得 。

所以异面直线 与 所成角的余弦值为 .A

(2)假设在线段 上存在点 ,使得 平面 .

,

可设

又 .

由 平面 ,得 即

故 ,此时 .

经检验,当 时, 平面 .

故线段 上存在点 ,使得 平面 ,此时 .

18、(本小题满分13分)

如图,某市拟在长为8km的道路OP的一侧修建一条运动

赛道,赛道的前一部分为曲线段OSM,该曲线段为函数

y=Asin x(A>0, >0) x [0,4]的图象,且图象的最高点为

S(3,2 );赛道的后一部分为折线段MNP,为保证参赛

运动员的安全,限定 MNP=120

(I)求A , 的值和M,P两点间的距离;

(II)应如何设计,才能使折线段赛道MNP最长? w.w.w.k.s.5.u.c.o.m

18.本小题主要考查三角函数的图象与性质、解三角形等基础知识,考查运算求解能力以及应用数学知识分析和解决实际问题的能力,考查化归与转化思想、数形结合思想,

解法一

(Ⅰ)依题意,有 , ,又 , 。

当 是,

(Ⅱ)在△MNP中∠MNP=120°,MP=5,

设∠PMN= ,则0°< <60°

由正弦定理得

,

0°< <60°, 当 =30°时,折线段赛道MNP最长

亦即,将∠PMN设计为30°时,折线段道MNP最长

解法二:

(Ⅰ)同解法一

(Ⅱ)在△MNP中,∠MNP=120°,MP=5,

由余弦定理得 ∠MNP=

从而 ,即

当且仅当 时,折线段道MNP最长

注:本题第(Ⅱ)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方式,还可以设计为:① ;② ;③点N在线段MP的垂直平分线上等

19、(本小题满分13分)

已知A,B 分别为曲线C: + =1(y 0,a>0)与x轴

的左、右两个交点,直线 过点B,且与 轴垂直,S为 上

异于点B的一点,连结AS交曲线C于点T.

(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。w.w.w.k.s.5.u.c.o.m

19.解析

解法一:

(Ⅰ)当曲线C为半圆时, 如图,由点T为圆弧 的三等分点得∠BOT=60°或120°.

(1)当∠BOT=60°时, ∠SAE=30°.

又AB=2,故在△SAE中,有

(2)当∠BOT=120°时,同理可求得点S的坐标为 ,综上,

(Ⅱ)假设存在 ,使得O,M,S三点共线.

由于点M在以SB为直线的圆上,故 .

显然,直线AS的斜率k存在且k>0,可设直线AS的方程为 .

设点

故 ,从而 .

亦即

由 得

由 ,可得 即

经检验,当 时,O,M,S三点共线. 故存在 ,使得O,M,S三点共线.

解法二:

(Ⅰ)同解法一.

(Ⅱ)假设存在a,使得O,M,S三点共线.

由于点M在以SO为直径的圆上,故 .

显然,直线AS的斜率k存在且K>0,可设直线AS的方程为

设点 ,则有

由 所直线SM的方程为

O,S,M三点共线当且仅当O在直线SM上,即 .

故存在 ,使得O,M,S三点共线.

20、(本小题满分14分)

已知函数 ,且 w.w.w.k.s.5.u.c.o.m

(1) 试用含 的代数式表示b,并求 的单调区间;

(2)令 ,设函数 在 处取得极值,记点M ( , ),N( , ),P( ), ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:

(I)若对任意的m ( , x ),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;

(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)w.w.w.k.s.5.u.c.o.m

20.解法一:

(Ⅰ)依题意,得

由 .

从而

①当a>1时,

当x变化时, 与 的变化情况如下表:

x

+ - +

单调递增 单调递减 单调递增

由此得,函数 的单调增区间为 和 ,单调减区间为 。

②当 时, 此时有 恒成立,且仅在 处 ,故函数 的单调增区间为R

③当 时, 同理可得,函数 的单调增区间为 和 ,单调减区间为

综上:

当 时,函数 的单调增区间为 和 ,单调减区间为 ;

当 时,函数 的单调增区间为R;

当 时,函数 的单调增区间为 和 ,单调减区间为 .

(Ⅱ)由 得 令 得

由(1)得 增区间为 和 ,单调减区间为 ,所以函数 在处 取得极值,故M( )N( )。

观察 的图象,有如下现象:

①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线 在点P处切线的斜率 之差Kmp- 的值由正连续变为负。

②线段MP与曲线是否有异于H,P的公共点与Kmp- 的m正负有着密切的关联;

③Kmp- =0对应的位置可能是临界点,故推测:满足Kmp- 的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线 在点 处的切线斜率 ;

线段MP的斜率Kmp

当Kmp- =0时,解得

直线MP的方程为

当 时, 在 上只有一个零点 ,可判断 函数在 上单调递增,在 上单调递减,又 ,所以 在 上没有零点,即线段MP与曲线 没有异于M,P的公共点。

当 时, .

所以存在 使得

即当 MP与曲线 有异于M,P的公共点

综上,t的最小值为2.

(2)类似(1)于中的观察,可得m的取值范围为

解法二:

(1)同解法一.

(2)由 得 ,令 ,得

由(1)得的 单调增区间为 和 ,单调减区间为 ,所以函数在处取得极值。故M( ).N( )

(Ⅰ) 直线MP的方程为

线段MP与曲线 有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数

上有零点.

因为函数 为三次函数,所以 至多有三个零点,两个极值点.

又 .因此, 在 上有零点等价于 在 内恰有一个极大值点和一个极小值点,即 内有两不相等的实数根.

等价于 即

又因为 ,所以m 的取值范围为(2,3)

从而满足题设条件的r的最小值为2.

21、本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,

(1)(本小题满分7分)选修4-4:矩阵与变换w.w.w.k.s.5.u.c.o.m

已知矩阵M 所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标

(2)(本小题满分7分)选修4-4:坐标系与参数方程

已知直线l:3x+4y-12=0与圆C: ( 为参数 )试判断他们的公共点个数

(3)(本小题满分7分)选修4-5:不等式选讲

解不等式∣2x-1∣<∣x∣+1

21.

(1)解:依题意得

由 得 ,故

从而由 得

故 为所求.

(2)解:圆的方程可化为 .

其圆心为 ,半径为2.

(3)解:当x<0时,原不等式可化为

又 不存在;

当 时,原不等式可化为

综上,原不等式的解集为

2023年新高考2卷数学难。

部分同学认为新课标II卷高考数学试题与新高考一卷相比要难一些,考生称“新二卷,做不起根本做不起,数学一生之敌”。也有同学称今年新课标II卷高考数学试题不是很难。

虽然数学高考考查的要点要体现基础性、综合性、应用性和创新性,突出理性思维,发挥数学科在人才选拔中的重要作用。但是本次新课标II卷高考数学试题,首先,更加注重基础性,而一反往常难题怪题,甚至教包饺子考的是打馅饼,这样的怪理论,不再出一些反套路的题,而脱离基础的知识。

2023新课标II卷高考数学试题估分注意事项:

1.核对答案估分。

对于大多数的学生而言,在拿到全国新课标II卷高考数学试题的答案之后都会进行核对,而一般算出来的高考成绩也是八九不离十,很多人都是依靠这点来进行估分。

不过我们在区别全国新课标II卷数学试题选择题和大题的时候要注意,因为选择题的答案是确定的,但是大题的分数就不是我们随意能够判断准确的。

2.全国新课标II卷数学试题估分要参考模拟成绩。

众所周知在参加高考之前我们都会进行三次模拟考试,基本上考试的模式都是按照高考进行的,如果说排除心理素质的原因三次成绩应该是有参考依据的,我们在高考之后对全国新课标II卷高考数学试题估分也可以将其作为分析数据,这样的话能够避免我们对数学试题离谱的估分情况,缩小估分的错误空间。

文章标签: # 高考 # 答案 # 所以