您现在的位置是: 首页 > 教育趋势 教育趋势

高考数学259个常考题型,120道必考题型总结!,高考经常考的数学题

tamoadmin 2024-06-27 人已围观

简介1.2022高考数学题及答案(2020高考数学题及答案解析)2.2021新高考数学大题必考题型有哪些3.全国卷高考数学的大题是什么的结构。 就是每个题的范围。4.关于高考数学最后一道题5.高考数学考点有哪些(最好是带有分值)6.高考八道数学大题的考核内容选填题:集合、复数、框图计算、线性规划、命题、双曲线和抛物线基础、等差和等比数列基础计算、三视图、三角函数图象平移、指数对数比较大小、诱导公式;解

1.2022高考数学题及答案(2020高考数学题及答案解析)

2.2021新高考数学大题必考题型有哪些

3.全国卷高考数学的大题是什么的结构。 就是每个题的范围。

4.关于高考数学最后一道题

5.高考数学考点有哪些(最好是带有分值)

6.高考八道数学大题的考核内容

高考数学259个常考题型,120道必考题型总结!,高考经常考的数学题

选填题:集合、复数、框图计算、线性规划、命题、双曲线和抛物线基础、等差和等比数列基础计算、三视图、三角函数图象平移、指数对数比较大小、诱导公式;

解答题:

三角——有一定基础的话,可以反复练习8个典型题,拿到6-10分,还来得及;

概率——文科考统计和概率,不难懂,比三角要好拿的,可拿10分;

立几——一个小时可以学会线面平行,拿4分;

数列——等差和等比数列基础的常规计算可拿4分;

导数——会求导公式、求切线可拿1-4分;

圆锥曲线——会求常见的求椭圆方程可拿4-5分。

以上都是可用很短时间就学会的小考点,但是学会要立马投入做题,把它做熟即可。

我是数学老师,辅导艺考生一般都是冲这些知识点打歼灭战。

好好努力,不言放弃,做题一直到6月7日晚上才停止,考到50以上有把握的。

祝你成功!!

2022高考数学题及答案(2020高考数学题及答案解析)

这几年河南的高考数学题一直都是采用教育部命制的最难的一套试题

2008年和以前一直都是:选择题12个 每题5分 共60分

填空题4个 每题4分 共16分

解答题6个 各题的分值按照难度分别为12,12,12,12,13,13分 共74分

2009年分值开始改革:选择题12个 每题5分 共60分

填空题4个 每题5分 共20分

解答题6个 各题的分值按照难度分别为10,12,12,12,12,12分 共70分

这就预示着考生对选择填空题要更加小心

填空题和选择题把高中数学要学的东西基本上都覆盖到了

六个解答题一般都考的知识点:

三角函数与向量,排列组合与概率,立体几何与空间向量

解析几何与平面向量,数列与不等式,函数导数与不等式

全国各地的高考都是考这些东西

楼上的朋友我说的是“教育部命制的最难的一套题目”

教育部命制两套题目 难的就是全国一卷

我知道全国一卷数学难度绝对没有湖南,湖北,江苏,江西,浙江的题目难

2021新高考数学大题必考题型有哪些

今天小编辑给各位分享2022高考数学题及答案的知识,其中也会对2020高考数学题及答案解析分析解答,如果能解决你想了解的问题,关注本站哦。

2022年全国乙卷高考数学试题答案

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题答案

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题答案相关文章:

★2022高考全国乙卷试题及答案

★2022高考理科数学乙卷试题解析

★2022年全国乙卷高考理科数学

★2022年全国乙卷文科数学卷真题公布

★2022年高考数学试题及答案

★2022年全国乙卷高考数学真题及答案

★2022年全国理科数学卷试题答案及解析

★2022全国Ⅰ卷高考数学试题及参考答案一览

★2022年英语全国乙卷试题及答案

★2022年高考乙卷数学真题试卷

2022年全国新高考1卷数学试题及答案解析

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学试题答案解析

高考数学复习主干知识点汇总:

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及答案解析相关文章:

★2022高考甲卷数学真题试卷及答案

★2022年新高考Ⅱ卷数学真题试卷及答案

★2022高考全国甲卷数学试题及答案

★2022高考数学大题题型总结

★2022全国乙卷理科数学真题及答案解析

★2022年全国乙卷高考数学试卷

★2022年新高考1卷语文真题及答案解析

★全国新高考一卷2022语文试题及答案一览

★2022江西高考文科数学试题及答案

★2022全国新高考II卷语文试题及答案解析

2022年全国新高考1卷数学试题及答案详解

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学答案详解

2022高考数学知识点总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式

②根据具体问题中的数量关系列不等式并解决简单实际问题

③用数轴表示一元一次不等式的解集

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

一、排列

1定义

从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

排列数的公式:Amn=n

特例:当m=n时,Amn=n!=n×3×2×1

规定:0!=1

二、组合

1定义

从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM

2.排列与组合

Anm=n-=n!/!Ann=n!

Cnm=n!/!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法

插空法间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

把具体问题转化或归结为排列或组合问题;

通过分析确定运用分类计数原理还是分步计数原理;

分析题目条件,避免“选取”时重复和遗漏;

列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn

特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及答案详解相关文章:

★2022高考北京卷数学真题及答案解析

★2022高考甲卷数学真题试卷及答案

★2022北京卷高考文科数学试题及答案解析

★2022高考全国甲卷数学试题及答案

★2022年新高考Ⅱ卷数学真题试卷及答案

★2022全国乙卷理科数学真题及答案解析

★2022高考数学大题题型总结

★2022年高考全国一卷作文预测及范文

★2022年高考数学必考知识点总结最新

★2022年全国乙卷高考数学试卷

2022年北京高考数学试题及参考答案

相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!

2022年北京高考数学试题

2022年北京高考数学试题参考答案

高考数学答题策略

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

一、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。

二、审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。

三、难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

四、快与准的关系

在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

2022年北京高考数学试题及参考答案相关文章:

★2022数学高考题及答案

★2022新高考数学Ⅰ卷试卷及参考答案

★2022年全国Ⅰ卷高考数学试题及参考答案公布

★2022全国一卷高考数学试题及答案

★2022新高考全国一卷数学试卷及答案解析

★2022年高考数学试题及答案

★2022全国新高考Ⅰ卷数学卷完整试题及答案一览

★2022新高考全国一卷数学试卷答案解析

★2022年高考数学全国乙卷试题答案

★2022新高考数学试题及答案详解

全国卷高考数学的大题是什么的结构。 就是每个题的范围。

从主干知识所占比重来看,新高考数学试卷与原来保持一致,主干知识的考察在60分,占整个填选题的75%,这也启示我们高中数学主干知识的稳定性与重要性,在以后的备考中要引起高度的重视。

2021年“新高考”数学试卷结构

第一大题,单项选择题,共8小题,每小题5分,共40分;

第二大题,多项选择题,共4小题,每小题5分,部分选对得3分,有选错得0分,共20分;

第三大题,填空题,共4小题,每小题5分,共20分;

第四大题,解答题,共6小题,均为必考题,涉及的内容是高中数学的六大主干知识:三角函数,数列,统计与概率,立体几何,函数与导数,解析几何。每小题12分,共60分。

怎么学好数学

数学是个费时费力的学科,无论文理,但凡数学好的同学很稳定的同学,他的数学相关时间基本符合一天时间的40-50%,所以如果数学想要冲击140,那么至少要保证40%的时间要花在数学上,如果你其他部分是很偏科的,那么就没有时间花在数学上,就不要做数学140的梦了

对于那些压轴题12、16、20、21来讲,首先不能怂,就全国卷目前 命题趋势来看,16题偏于简单,12题难度在增大,所以在有时间的情况下,可以先适度钻研16题,12题没时间没思路可以懵,毕竟是选择题,还是有概率蒙对的。

20题圆锥曲线类型考的不是难度,而是你是否认真。其实圆锥曲线并不难,该理解的关键点和题型搞清楚了它其实并没有太大的变化,所以这个地方题目去刷真题即可。(所有的好题都值得做三遍,什么是好题,你既然110以上了,应该有这个基本判断。)第一遍做正常做,做完对答案;第二遍隔天或者隔两天做效果最好,重新快速把昨天的好的题目过一遍,要针对关键步骤进行梳理,第二遍的想法和第一遍的想法有什么区别,差距在哪里,可以丰富思路,改变思考习惯,对于压力很大的考场有很大帮助。第三遍最好是7天以后,时隔7天,豁然开朗,不信你试试。好的学生在这一点上做的很好,拿到题目的时候他们并不是短时间内想出来这个题目怎么解,而是想起来类似很明朗的思路,按照这个思路去做题,然后一步步套进去,演算,就得出结果了。

关于高考数学最后一道题

高考数学满分150分,选择题12道,填空题4道,每题5分,共80分,剩余的部分为几道大题,共70分,所以大题在整个卷子中占了相当大的比例,大题考察的范围分别是:

1.数列或者三角函数

2.立体几何

3.概率统计

4.圆锥曲线

5.导数

6.选修题(参数方程和不等式)

一、数列

这类型题目明显感觉就比较难了,但同时掌握了套路和方法,这部分题也没什么难的。

数列主要是求解通项公式和前n项和。首先是通项公式,要看题目中给出的条件形式,不同的形式对应不同的解题方法,其中主要包括公式法(定义法)、累加法、累乘法、待定系数法、数学归纳法 倒数变化法等,熟练应用这些方法并积累例题达到熟练的程度,然后就是求前n项和,这里一共有四种方法,倒序相加法、错位相减法、分组求和法以及裂项相消法,只要求前n项和只要考虑以上方法即可,多数情况下考察错位相减法,同时也是大家失分项,所以在这里一定要强加练习,规范书写步骤。

二、三角函数

对于三角函数的学习关键是熟记公式及灵活的运用公式,其实高中数学也是一门记忆学科,数学更需要背诵,很多知识、解法、定理往往更需要我们花时间背下来,很多时候,解题过程中被卡住,并不是因为想不到思路,而是因为简单的公式或者定理掌握不好,甚至是记反了,当然同时也是对题型的陌生和对解题方法的陌生。

对于三角函数的考法共有两种,分别是解三角形和三角函数本身,大概百分之十到二十的概率考解三角形,百分之八十到九十概率考对于三角函数本身的熟练运用,之所以解三角函数考的概率低是因为出现这样的题目简直太简单了,根本就是送分题,关于解三角函数,我们学习了三个公式,正弦定理、余弦定理和面积公式,所以除去求面积的话一定要用的面积公式之外,剩余的公式如果不能迅速判断,就都试一下,只要推出来要求的结果就可以了。另外一种就是考察三角函数本身,这样的题的套路一般都是给定一个相对较复杂的式子,然后问这个函数的定义域值域周期频率单调性等问题,解决方法就是首先利用和差倍半公式对原始式子进行化简,化简成一般式然后求解需要求的。所以归根结底还是要熟记公式。

三、概率统计

以理科数学为例,考点覆盖概率统计必修和选修的各个章节的内容,考查了抽样法、统计图表、数据的数字特征、用样本估计整体、回归分析、独立性检验、古典概型、几何概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法,这样听起来感觉内容多而杂,但其实只要掌握了基本知识,再加上例题的引导,后期各做一道练习题加以巩固,在高考中概率统计拿满分不是什么难事。但是简单的同时更加要求我们的仔细严谨程度,切记不要出现忘平方、忘开根号等低级错误。

四、立体几何

这个题相对于前面的给分题难度稍微大一些,可能会卡住一部分人,这道题有两到三问,前面问的某条线的大小或者证明某个线或面与另外一个线或面平行或垂直,最后一问是求二面角,这类题解题方法有两种,传统法和向量法,各有利弊。向量法可以说说任何情况下都可以使用,没有任何技术含量,肯定能解出正确答案,但是计算量大而且容易出错,应用向量法,首先建立空间直角坐标系,然后根据已知条件可以用向量表示每条直线,最后利用向量的知识求解题目,传统法求解则是同样要求我们熟练掌握各种性质定理和判定定理,在立体几何这一部分还有一个关键的要点,就是书写格式,这也是很多同学在平时考试结束后有这样的疑问“为什么要扣我这儿的分,我都证出来了······”之类的话,就是因为我们平时不注重书写步骤丢掉了很多不该丢掉的分数,在这一部分的推断题中,一定要注重条件和结论,几个结论推出来的一定切记缺一不可,否则即使之后结果得证也不会拿到全分。

五、圆锥曲线

仔细观察高考卷会发现圆锥曲线也是有一定的套路的,一般套路就是,前半部分是对基本性质的考察,后半部分考察与直线相交,且后半部分的步骤几乎都是一致的,即,设直线,然后将直线方程带入圆锥曲线,得一个有关x的二次方程,分析判别式,利用韦达定理的结果求解待求量,在这里要明确它的求解方法:直接法(性质法)、定义法、直译法、相关点法、参数法、交轨法、点差法。

六、导数和函数

导数与函数的题型大体分为三类:

1.关于单调性、最值、极值的考察

2.证明不等式

3.函数中含有字母,分类讨论字母的取值范围

七、参数方程

这一部分题目可以说成是送分题,这儿就不过多阐述了,唯一的方法就是考前狂刷一下历年高考题,这样就算拿满分也不是什么难事。

高考数学考点有哪些(最好是带有分值)

历年全国高考数学试卷中,压轴题(解答题最后一题)的分值为14分,将近占卷面总分的10%,且综合性较强,对考生的数学能力,思维能力也有较高要求,其难度和重要性自然不言而喻..压轴题一般涉及到函数(数列属于特殊的函数),解析几何,不等式三大方面内容,还穿插有集合思想,三角代换与运算,向量与导数的运用(新教材内容),立体几何初步等等.

解析几何

是一个高考的难点,这个年主要是学科特点决定的。解析几何是用代数方法解决几何问题的学科。所以,既有形又有数,对于数形结合的思想考查的比较多,要求也比较高。再一个,你用代数方法解决几何问题的过程当中,对于代数方法的要求,也就是对字母运算等等,或者是方程变形等等这些要求也相当高,这些难点集中在一块,就使得解析几何这个问题非常难。

要解好解析几何这个问题,第一不要怕,为什么?现在解析几何的题已经不是高考当中最难的题,所以同学们要有信心解好。再一个怎么解好它呢?就要分析一下解析几何难在什么地方?很多同学做解析几何的时候,第一有可能不知道从哪入手,第二一对式子摆在那,列出一对方程来,下面不知道怎么处理,第三运算不过关,一算就错。针对这些问题,建议同学们复习的过程当中,不知道从哪入手的方面,就是要做好几何量和代数量的相互转化,几何量怎么样迅速地转化成代数表述。像圆锥曲线的定义,在数与形之间建立联系,恰当地做好数和形的转化。再一个,很多同学写出一堆式子来,不知道怎么办?这个是往往缺乏目标性。解析几何应该是一个整体思维,你先想好要干什么,再去做。如果是漫无目标的,比如把直线方程和圆锥曲线方程摆在那,下面怎么做,就不知道了,其实就是缺乏目标性。所以要注意整体思维。

函数与数列不等式的综合题

这也是高考的重点。这一部分的内容特别考查能力。但是,现在高考关于这一部分考查能力的题目,往往是几个考查重点和热点的有机组合,他们都来自于简单题,是简单题的叠加,所以,我们要做好这种题的话,我觉得可能系统掌握各方面的知识比你在某一方面深挖洞好得多。你光是在某一方面学得特别多,但是不能把它有机地整合,也做不好这种题。

也就是说,最主要的还在于把握基础,把这个基础知识点、基本方法充分掌握的前提下,学会怎么把一个看起来复杂的问题,很综合的问题分解成几个部分。这几个部分,当然就是小的,比如把一个综合问题分解为这部分是函数,是有关值域的,那部分是有关数列的,分解成这样几个问题的话,可能同学做起来就很简单了。

我就想起来前一段我们刚开学,我们有一次月考,考完试之后,有一个老师就跟我说,他们班考的最好的两位同学,都是假期没怎么太做新题,都是把以前的题好好过了一遍。考的最好的两位同学是这样。你想想这件事情,是很有道理的。反过来我们看一看高三所做的那些题,有很多内容,其实高一高二的时候就做过了。第一轮复习有很多内容都是已经复习的比较全面了,所以,你返回去总结自己已经错的那些东西,已经错过的,或者已经做过的,这件事情是非常非常重要的。在此基础上,如果有同学第二轮复习关死看以前的错题,那也不够,适当的还是要再做一些新题。

高考八道数学大题的考核内容

不等式

新课标删减的知识点有:分式不等式(只看成二次不等式的应用)

(一)考点剖析

1.不等关系与不等式:高考中,对本节内容的考查,主要放在不等式的性质上,题型多为选择题或填空题,属容易题。

2.一元二次不等式及其解法:高考命题中,对一元二次不等式解法的考查,若以选择题、填空题出现,则会对不等式直接求解,或经常地与集合、充要条件相结合,难度不大。若以解答题出现,一般会与参数有关,或对参数分类讨论,或求参数范围,难度以中档题为主。

3.简单的线性规划:线性规划问题时多以选择、填空题的形式出现,题型以容易题、中档题为主,考查平面区域的面积、最优解的问题;随着课改的深入,近年来,以解答题的形式来考查的试题也时有出现,考查学生解决实际问题的能力。

4.基本不等关系:高考命题重点考查均值不等式和证明不等式的常用方法,单纯不等式的命题,主要出现在选择题或填空题,一般难度不太大。

5.不等式的综合应用:不等式的综合应用多以应用题为主,属解答题,有一定的难度。

6.不等式的证明:不等式的证明多以交汇出现,以解答题的形式出现,属中等偏难的试题。

(二)命题规律

在近年的高考中,不等式的考查有选择题、填空题、解答题都有,不仅考查不等式的基础知识,基本技能,基本方法,而且还考查了分析问题、解决问题的能力。解答题以函数、不等式、数列导数相交汇处命题,函数与不等式相结合的题多以导数的处理方式解答,函数不等式相结合的题目,多是先以直觉思维方式定方向,以递推、数学归纳法等方法解决,具有一定的灵活性。

由上述分析,预计不等式的性质,不等式的解法及重要不等知识将以选择题或填空的形式出现;解答题可能出现解不等与证不等式。如果是解不等式含参数的不等式可能性比较大,如果是证明题将是不等式与数列、函数、导数、向量等相结合的综合问题,用导数解答这类问题仍然值得重视。有时属高难度的题。

三)复习建议

1.不等式的证明题题型多变,证明思路多样,技巧性较强,加之又没有一劳永逸、放之四海而皆准的程序可循,所以不等式的证明是本章的难点。攻克难点的关键是熟练掌握不等式的性质和基本不等式,并深刻理解和领会不等式证明中的数学转化思想。

在复习中应掌握证明不等式的常用思想方法:比较法;综合法;分析法;放缩法;反证法;函数法;换元法;导数法。

2.在复习解不等式过程中,注意培养、强化与提高函数与方程、等价转化、分类讨论、数形结合的数学思想和方法,逐步提升数学素养,提高分析解决综合问题的能力。能根椐各类不等式的特点,变形的特殊性,归纳出各类不等式的解法和思路以及具体解法。

3.熟练掌握不等式的基本性质,常见不等式(如一元二次不等式)的解法,不等式在实际问题中的应用,不等式的常用证明方法

平面解析几何

新课标降低要求的知识点有:对双曲线只作一般性了解,新课标删减的知识点有:第二定义。

(一)考点剖析

1.点、直线、圆的位置关系问题:本节内容一般以选择题或填空题为主,难度不大,属容易题。

2.直线、圆的方程问题:直线与圆的方程问题多以选择题与填空题形式出现,属容易题。

3.曲线(轨迹)方程的求法:轨迹问题在高考中多以解答题出现,属中档题。

4.有关圆锥曲线的定义的问题:填空题、选择题中出现,属中等偏易题。

5.圆锥曲线的几何性质

6.直线与圆锥曲线位置关系问题:直线与圆锥曲线位置关系涉及函数与方程,数形结合,分类讨论、化归等数学思想方法,因此这部分经常作为高考试题的把关压轴题,命题主要意图是考查运算能力,逻辑揄能力。

(二)命题规律

解析几何是高中数学的一个重要内容从这几年高考来看一般是选择题两题、填空与解答各一题。选择、填空题以中档居多解答一般靠后。试题内容涉及曲线方程、直线与曲线位置关系,并结合函数、方程、不等式、平面向量、导数等知识,综合考查了学生灵活解决问题的能力。

(三)复习建议

1.加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能和基本方法。

2.由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线的重点内容、高考的热点问题作深入的研究。

3.通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲线问题的思想和方法,提高我们分析问题和解决问题的能力。求曲线(轨迹)方程。特别是求曲线(轨迹)方程和直线与圆锥曲线的位置关系问题是热点中的热点。

4.定值问题、参数取值范围、最大最小值等也是重中之重。

立体几何

新课标增加的知识点有:三视图。

删减的知识点有:三垂线定理及其逆定理;

降低要求的知识点有:仅要求认识柱、锥、台、球及简单组合体的结构特征,通过实例概括出结构特征,不必证明,对棱柱、正棱锥、求的性质不必深入挖掘。

(一)考点剖析

1.空间几何体的结构、三视图、直观图:柱、锥、台、球体及其简单组合体的结构特征在旧教材中出现过,而三视图为新增内容,一般情况下,新增内容会重点考查,三视图是出题的热点,题型多以选择题、填空题为主,也有出现在解答题里,如2007年广东高考就出现在解答题里,属中等偏易题。

2.空间几何体的表面积和体积:柱、锥、台、球的表面积和体积以公式为主,按照新课标的要求,体积公式不要求记忆,只要掌握表面积的计算方法和体积的计算方法即可。因此,题目从难度上讲属于中档偏易题。

3.点、线、面的位置关系:主要考查平面的基本性质、空间两条直线的位置关系,多以选择题、填空题为主,难度不大。

4.直线与平面、平面与平面平行的判定与性质:主要考查线线、面面平行的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线面平行、面面平行为主,属中档题。直线与平面、平面与平面垂直的判定与性质:主要考查线线、面面垂直的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线线垂直、线面垂直、面面垂直为主,属中档题。

(二)命题规律

涉及立体几何内容的命题形式变化最多。

除保留传统的“四选一”的选择题型外,还尝试开发了“多选填空”、“完型填空”、“构造填空”等题型。立体几何在2010年高考中的考查题型一般会有1—2题选择题或填空题的小题、1道解答题的大题,难度多为中、低档。小题着重考查基础知识与基本定理的理解,特别是线线、线面、面面平行(或垂直)这3种平行(或垂直)关系的判定与性质。通常有一个小题还会与命题、充要条件等知识要点交汇出现,而另一个小题则是三视图的识别、表面积与体积的计算。对于大题,往往会以简单的几何体为载体,分2—3个小题的形式出现,坡度降低,难点分散。主要考查点、直线、平面的位置关系及相关距离或角、空间几何体的表面积与体积的计算,同时涉及探究性问题、立体图形的展开与平面图形的翻折问题、定值与最值问题等,文科主要考查直接法,而理科则是直接法与向量法并重,但趋向于应用向量法解决。

三视图作为课程标准中的新增内容,对空间想象力有较高的要求,是高考中的一个热点。作出几何体的三视图及由三视图画出相应的几何体或想象出几何体是三视图中的两类问题。

“动态”立几是近几年来高考立体几何中注入的新血液,常考常新。其特点一是落实基本知识与基本思想方法,其二是注重立几知识与其它知识(如解析几何、函数、不等式、导数、三角函数等)的有机结合。随着新课程的改革,今后高考命题中应会适当增加关于“动态”立体几何的问题。

一、首先高考应该是6道大题,而不是8道吧。

二、6道数学大题:

1、三角函数(含解三角形)。考查周期性,最值、单调性、对称性等图像特征;诱导公式、两角和与差公式、二倍角公式、升幂降幂公式、辅助角公式,正弦、余弦定理。整体思想(将某些角的组合看成一个角)可用于求值域、单调性、对称轴,求三角函数值等.

2、随机变量的分布列(含统计)。考查分层抽样、频率分布直方图、茎叶图、超几何分布、求分布列与期望。求分布列的步骤为:列值→求概率→列表→(检验,概率和=1)

3、立体几何。重点考查线⊥线、线⊥面、面⊥面的判定,也可能考线∥面,面∥面的判定。二面角、直线和平面所成的角,异面直线所成的角。

4、数列(含数学归纳法,放缩法)。考查等差等比数列的基本公式基本性质,两式相减消去或的方法,构造新数列,裂项法,错位相减法等.可能用到放缩法或基本不等式、数学归纳法、二项式定理等。

5、解析几何。直线的点斜式,圆、椭圆、双曲线、抛物线的定义以及标准方程、图形,椭圆、双曲线中a,b,c在图中的位置及三者的关系。联立→消元→判别式→韦达定理;点到直线距离公式,弦长公式。求轨迹方程的定义法,直接法,转化法(相关点法)。

6、函数与导数:函数的单调性、最值、极值,零点存在定理,分类讨论思想.

不知是否回答了你的问题

文章标签: # 高考 # 不等式 # 数学