您现在的位置是: 首页 > 教育趋势 教育趋势

高考文科数学数列经典大题训练(附答案)_文科数学数列高考题

tamoadmin 2024-07-22 人已围观

简介1.急求2012福建高考文科数学题目及答案2.09浙江高考浙江文科数学答案3.2012年高考新课标文科数学第12题怎样解答4.2010浙江高考文科数学卷第十九题数列问题第二个答案没看懂。5.山东高考文科数学的答案6.2022全国新高考Ⅱ卷文科数学试题及答案解析7.2010年安徽文科数学高考卷答案及详解(手机能看的)数 学(文科)第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,

1.急求2012福建高考文科数学题目及答案

2.09浙江高考浙江文科数学答案

3.2012年高考新课标文科数学第12题怎样解答

4.2010浙江高考文科数学卷第十九题数列问题第二个答案没看懂。

5.山东高考文科数学的答案

6.2022全国新高考Ⅱ卷文科数学试题及答案解析

7.2010年安徽文科数学高考卷答案及详解(手机能看的)

高考文科数学数列经典大题训练(附答案)_文科数学数列高考题

数 学(文科)

第Ⅰ卷(选择题 共50分)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合 与 ,则( )

A. B. C. D.

2.函数 在 处有极值,则 的值为( ).

A. B. C. D.

3. 若 ,则下列结论正确的是( )

A. B. C. D.

4.下列三个不等式中,恒成立的个数有( )

① ; ② ;

③ .

A.3 B.2 C.1 D.0

5. 我校航模小组在一个棱长为6米的正方体房间试飞一种新型模型飞机,为保证模型飞机安全,模型飞机(外形不计)在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为( )

A. B. C. D.

6. 已知某几何体的三视图如右图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )

A. B.

C. D.

7.若满足条件AB= ,C= 的三角形 有两个,则边长BC的取值范围是( )

A. B. C. D.

8.把函数 的图象按向量 平移后得到函数 的图象,则函数 的最大值为( )

A. 0 B. 1 C. D. -1

9.函数 的零点个数为( )

A.2 B.3 C.4 D.5

10.下列命题中

①命题“若 ,则x = 1”的逆否命题为“若x ≠ 1,则 ”;

②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是

③若 为命题,则 均为命题 ;

④对命题 : 使得 ,则 均有 .

其中正确命题的个数是( )

A.2 B.3 C.4 D.5

第Ⅱ卷(非选择题 共100分)

二.填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上.

11.设等差数列 的前 项和为 ,若 ,则 = .

12.设 为实数,若复数 ,则 = .

13. 已知实数x,y满足 且 的最大值是 .

14.已知 , ①设方程 的 个根是 ,则 ;

②设方程 的 个根 是 、 ,则 ;

③设方程 的 个根是 、 、 ,则 ;

④设方程 的 个根是 、 、 、 ,则 ;

由以上结论,推测出一般的结论: 设方程 的 个根是 、 、 、 ,

则 .

15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)

(A)(几何证明选做题) 如图, 的弦ED,CB

的延长线交于点A。若BD AE,AB=4, BC=2,

AD=3,则CE= ;

(B)(极坐标系与参数方程选做题)已知抛物线C1的参数方程为x=8t2y=8t(t为参数),圆C2的极坐标方程为ρ=r(r>0),若斜率为1的直线经过抛物线C1的焦点,且与圆C2相切,则r=_ __;

(C)(不等式选做题)已知 ,若关于 的方程 有实根,则 的取值范围是 .

三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.

16.(本题满分12分)已知函数

(I)求函数 的最小值和最小正周期;

(II)设 的内角 的对边分别为 ,且 , ,求 的值.

17.(本题满分12分)在等比数列 中, ,公比 ,且 ,又 是 与 的等比中项.

(Ⅰ)求数列 的通项公式;

(Ⅱ)设 ,求数列 的前 项和 .

18.(本题满分12分)已知四棱柱 中, 底面 , , , .

(Ⅰ)求证: ;

(Ⅱ)求四面体 的体积.

19.(本题满分12分)某市在每年的春

节后,市都会发动公务员参与到植

树活动中去.林管部门在植树前,为保证

树苗的质量,都会在植树前对树苗进行

检测.现从甲乙两种树苗中各抽测了10株

树苗的高度,量出的高度如下(单位:厘米)

甲:

乙:

(Ⅰ)根据抽测结果,完成答题卷中的茎叶图,

并写出甲、乙两种树苗的高度的中位数;

(Ⅱ)设抽测的10株甲种树苗高度平均值为 ,将这10株树苗的高度依次输入按程序框图进行的运算,问输出的 大小为多少?并说明 的统计学意义.

20.(本题满分13分)已知函数 ,

(Ⅰ)当 时,求 的极大值;

(Ⅱ)当 时,讨论 在区间 上的单调性.

21.(本题满分14分)已知两点 (-2,0), (2,0), 动点P在y轴上的射影为H,若 、 分别是公比为2的等比数列的第三、四项.

(Ⅰ)求动点P的轨迹方程C;

(Ⅱ)已知过点N的直线 交曲线C于x轴下方两个不同的点A、B,设AB的中点为R,若过R与定点 的直线交 轴于点D( ,0),求 的取值范围.

急求2012福建高考文科数学题目及答案

表示答案解释地很详细,不知楼主哪里不懂

因为{tn}是等比数列,所以t1t(n+2)=t2t(n+1)=...=tit(n+3-i)=(t1^2)q^(n+1)=1*100=10^2

①×②,得Tn^2=10*10*10*...*10,共2(n+2)个10

=10^2(n+2)

Tn=10^(n+2)

an=lgTn=lg10^(n+2)=n+2

09浙江高考浙江文科数学答案

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2012年高考新课标文科数学第12题怎样解答

2009年浙江高考文科数学试题和答案

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设 , , ,则 ( )

A. B. C. D.

1. B 命题意图本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.

解析 对于 ,因此 .

2.“ ”是“ ”的( )

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件 D.既不充分也不必要条件

2. A 命题意图本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.

解析对于“ ” “ ”;反之不一定成立,因此“ ”是“ ”的充分而不必要条件.

3.设 ( 是虚数单位),则 ( )

A. B. C. D.

3.D 命题意图本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.

解析对于

4.设 是两个不同的平面, 是一条直线,以下命题正确的是( )

A.若 ,则 B.若 ,则

C.若 ,则 D.若 ,则

4.C 命题意图此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.

解析对于A、B、D均可能出现 ,而对于C是正确的.

5.已知向量 , .若向量 满足 , ,则 ( )

A. B. C. D.

5.D 命题意图此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.

解析不妨设 ,则 ,对于 ,则有 ;又 ,则有 ,则有

6.已知椭圆 的左焦点为 ,右顶点为 ,点 在椭圆上,且 轴, 直线 交 轴于点 .若 ,则椭圆的离心率是( )

A. B. C. D.

6.D 命题意图对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.

解析对于椭圆,因为 ,则

7.某程序框图如图所示,该程序运行后输出的 的值是( )

A. B.

C. D.

7.A 命题意图此题考查了程序语言的概念和基本的应用,通过对程序语言的考查,充分体现了数学程序语言中循环语言的关键.

解析对于 ,而对于 ,则 ,后面是 ,不符合条件时输出的 .

8.若函数 ,则下列结论正确的是( )

A. , 在 上是增函数

B. , 在 上是减函数

C. , 是偶函数

D. , 是奇函数

8.C 命题意图此题主要考查了全称量词与存在量词的概念和基础知识,通过对量词的考查结合函数的性质进行了交汇设问.

解析对于 时有 是一个偶函数

9.已知三角形的三边长分别为 ,则它的边与半径为 的圆的公共点个数最多为( )

A. B. C. D.

9.C 命题意图此题很好地考查了平面几何的知识,全面而不失灵活,考查的方法上面的要求平实而不失灵动,既有切线与圆的位置,也有圆的移动

解析对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.

10.已知 是实数,则函数 的图象不可能是( )

10.D 命题意图此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.

解析对于振幅大于1时,三角函数的周期为 ,而D不符合要求,它的振幅大于1,但周期反而大于了 .

非选择题部分(共100分)

注意事项:

1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、填空题:本大题共7小题,每小题4分,共28分。

11.设等比数列 的公比 ,前 项和为 ,则 .

11.15 命题意图此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前 项和的知识联系.

解析对于

12.若某几何体的三视图(单位: )如图所示,则此几何体的体积是 .

12. 18 命题意图此题主要是考查了几何体的三视图,通过三视图的考查充分体现了几何体直观的考查要求,与表面积和体积结合的考查方法.

解析该几何体是由二个长方体组成,下面体积为 ,上面的长方体体积为 ,因此其几何体的体积为18

13.若实数 满足不等式组 则 的最小值是 .

13. 4命题意图此题主要是考查了线性规划中的最值问题,此题的考查既体现了正确画线性区域的要求,也体现了线性目标函数最值求解的要求

解析通过画出其线性规划,可知直线 过点 时,

14.某个容量为 的样本的频率分布直方图如下,则在区间 上的数据的频数为 .

14. 30命题意图此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力

解析对于在区间 的频率/组距的数值为 ,而总数为100,因此频数为30

15.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:

高峰时间段用电价格表 低谷时间段用电价格表

高峰月用电量

(单位:千瓦时) 高峰电价

(单位:元/千瓦时) 低谷月用电量

(单位:千瓦时) 低谷电价

(单位:元/千瓦时)

50及以下的部分 0.568 50及以下的部分 0.288

超过50至200的部分 0.598 超过50至200的部分 0.318

超过200的部分 0.668 超过200的部分 0.388

若某家庭5月份的高峰时间段用电量为 千瓦时,低谷时间段用电量为 千瓦时,

则按这种计费方式该家庭本月应付的电费为 元(用数字作答).

15. 命题意图此题是一个实际应用性问题,通过对实际生活中的电费的计算,既考查了函数的概念,更侧重地考查了分段函数的应用

解析对于应付的电费应分二部分构成,高峰部分为 ;对于低峰部分为 ,二部分之和为

16.设等差数列 的前 项和为 ,则 , , , 成等差数列.类比以上结论有:设等比数列 的前 项积为 ,则 , , , 成等比数列.

16. 命题意图此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力

解析对于等比数列,通过类比,有等比数列 的前 项积为 ,则 , , 成等比数列.

17.有 张卡片,每张卡片上分别标有两个连续的自然数 ,其中 .

从这 张卡片中任取一张,记“该卡片上两个数的各位数字之和(例如:若取到

标有 的卡片,则卡片上两个数的各位数字之和为 )不小于 ”为 ,

则 .

17. 命题意图此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平

解析对于大于14的点数的情况通过列举可得有5种情况,即 ,而基本有20种,因此

三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)在 中,角 所对的边分别为 ,且满足 ,

. (I)求 的面积; (II)若 ,求 的值.

18.解析:(Ⅰ)

又 , ,而 ,所以 ,所以 的面积为:

(Ⅱ)由(Ⅰ)知 ,而 ,所以

所以

19.(本题满分14分)如图, 平面 , , , , 分别为 的中点.(I)证明: 平面 ;(II)求 与平面 所成角的正弦值.

19.(Ⅰ)证明:连接 , 在 中, 分别是 的中点,所以 , 又 ,所以 ,又 平面ACD ,DC 平面ACD, 所以 平面ACD

(Ⅱ)在 中, ,所以

而DC 平面ABC, ,所以 平面ABC

而 平面ABE, 所以平面ABE 平面ABC, 所以 平面ABE

由(Ⅰ)知四边形DCQP是平行四边形,所以

所以 平面ABE, 所以直线AD在平面ABE内的射影是AP,

所以直线AD与平面ABE所成角是

在 中, ,

所以

20.(本题满分14分)设 为数列 的前 项和, , ,其中 是常数.

(I) 求 及 ;

(II)若对于任意的 , , , 成等比数列,求 的值.

20、解析:(Ⅰ)当 ,

( )

经验, ( )式成立,

(Ⅱ) 成等比数列, ,

即 ,整理得: ,

对任意的 成立,

21.(本题满分15分)已知函数 .

(I)若函数 的图象过原点,且在原点处的切线斜率是 ,求 的值;

(II)若函数 在区间 上不单调,求 的取值范围.

解析:(Ⅰ)由题意得

又 ,解得 , 或

(Ⅱ)函数 在区间 不单调,等价于

导函数 在 既能取到大于0的实数,又能取到小于0的实数

即函数 在 上存在零点,根据零点存在定理,有

, 即:

整理得: ,解得

22.(本题满分15分)已知抛物线 : 上一点 到其焦点的距离为 .

(I)求 与 的值;

(II)设抛物线 上一点 的横坐标为 ,过 的直线交 于另一点 ,交 轴于点 ,过点 作 的垂线交 于另一点 .若 是 的切线,求 的最小值.

22.解析(Ⅰ)由抛物线方程得其准线方程: ,根据抛物线定义

点 到焦点的距离等于它到准线的距离,即 ,解得

抛物线方程为: ,将 代入抛物线方程,解得

(Ⅱ)由题意知,过点 的直线 斜率存在且不为0,设其为 。

则 ,当 则 。

联立方程 ,整理得:

即: ,解得 或

,而 , 直线 斜率为

,联立方程

整理得: ,即:

,解得: ,或

而抛物线在点N处切线斜率:

MN是抛物线的切线, , 整理得

,解得 (舍去),或 ,

2010浙江高考文科数学卷第十九题数列问题第二个答案没看懂。

a2-a1=1 ①

a3+a2=3 ②

a4-a3=5 ③

a5+a4=7 ④

a6-a5=9 ⑤

a7+a6=11 ⑥

a8-a7=13 ⑦

a9+a8=15 ⑧

a10-a9=17 ⑨

……

②-①,②+③,得a3+a1=2,a4+a2=8,∴a1+a2+a3+a4=10

⑥-⑤,⑥+⑦,得a7+a5=2,a8+a6=24,∴a5+a6+a7+a8=26

同理,可得a9+a10+a11+a12=42

∴S60=a1+a2+a3+a4+……+a57+a58+a59+a60

=(a1+a2+a3+a4)+(a5+a6+a7+a8)+……+(a57+a58+a59+a60)=10+26+42+……

=15×10+(15-1)*15/2*16=1830

选择D

山东高考文科数学的答案

你应该是第三步到第四步看不懂,方法是只要在第三步两边都乘以8,再在左右两边同时加上一个d^2,使得左边形成一个可以用完全平方公式来化简的式子,再在把8从左移到右,这样就变成了第四步这样这样子了。分析发现第四步左边大于等于0所以右边也一样,于是推出d^2大与等于8

所以就得到这个答案了····

2022全国新高考Ⅱ卷文科数学试题及答案解析

试题与答案

数学试题(文科)

第Ⅰ卷 选择题(共50分)

一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)

1.已知集合 , ,则 =( A )

A. B.

C. D.

2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )

A.6 B.-2 C.4 D.-6

3.已知 ,则“ ”是“ ”的 ( B )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

4.已知点P(x,y)在不等式组 表示的平面区域上运动,

则z=x-y的取值范围是( )

A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]

5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )

A. B. C. D.

一年级 二年级 三年级

女生 373

男生 377 370

6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的

学生人数为( )

A.24 B.18 C.16 D.12

7.平面向量 =( )

A.1 B.2 C.3 D.

8.在等差数列 中,已知 ,那么 的值为( )

A.-30 B.15 C.-60 D.-15

9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )

A.①是真命题,②是命题 B.①是命题,②是真命题

C.①②都是真命题 D.①②都是命题

10.已知一个几何体的三视图如所示,则该几何体的体积为( )

A.6 B.5.5

C.5 D.4.5

第Ⅱ卷 非选择题(共100分)

二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.

(一)必做题(11~14题)

11.已知 ,且 是第二象限的角,

则 ___________.

12.执行右边的程序框图,若 =12, 则输

出的 = ;

13.函数 若

则 的值为: ;

14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.

(二)选做题(15~17题,考生只能从中选做一题)

15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;

16.(选修4—5 不等式选讲)不等式 的解集是: ;

17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .

三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)

18.(本小题12分)

已知向量 , ,设 .

(1).求 的值;

(2).当 时,求函数 的值域。

19.(本小题12分)

已知函数 .

(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,

求方程 有两个不相等实根的概率;

(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.

20.(本小题12分)

在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.

(1)求证:BC⊥AD;

(2)求三棱锥C—AOD的体积.

21.(本小题12分)

已知数列 的前n项和为 , 且满足 ,

(1) 求 的值;

(2) 求证:数列 是等比数列;

(3) 若 , 求数列 的前n项和 .

22、(本小题13分)

已知函数 在点 处的切线方程为 .

(1)求 的值;

(2)求函数 的单调区间;

(3)求函数 的值域.

23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.

(1)求P点坐标;

(2)求直线AB的斜率;

(3)求△PAB面积的最大值.

文科数学参考答案与评分标准

一、选择题:

A卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案 A D A B D C B A D C

B卷选择题答案

题号 1 2 3 4 5 6 7 8 9 10

答案

二、填空题:

(一)必做题

11. ; 12.4.; 13.1或 ; 14. .

(二)选做题

15.相交;16. ;17. .

三、解答题:

18.解: =

=

= ……………………………………(4分)

(1)

= …………………………(8分)

(2)当 时, ,

∴ ………………………(12分)

19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素

∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),

(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本总数为12.

设“方程 有两个不相等的实根”为A,

当 时方程 有两个不相等实根的充要条件为

当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)

即A包含的基本数为6.

∴方程 有两个不相等的实根的概率

……………………………………………………(6分)

(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数

则试验的全部结果构成区域

这是一个矩形区域,其面积

设“方程 没有实根”为B

则B构成的区域为

即图中阴影部分的梯形,其面积

由几何概型的概率计算公式可得方程 没有实根的概率

………………………………………………(12分)

20.解法一:(1)∵BOCD为正方形,

∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角

∴AO⊥BO ∵AO⊥CO 且BO∩CO=O

∴AO⊥平面BCO 又∵

∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO

∴BC⊥AD …………(6分)

(2) …………………………(12分)

21.解:(1)因为 ,令 , 解得 ……1分

再分别令 ,解得 ……………………………3分

(2)因为 ,

所以 ,

两个代数式相减得到 ……………………………5分

所以 ,

又因为 ,所以 构成首项为2, 公比为2的等比数列…7分

(3)因为 构成首项为2, 公比为2的等比数列

所以 ,所以 ……………………………8分

因为 ,所以

所以

因此 ……………………………11分

所以 ………………………12分

22.解:(1)

∵ 在点 处的切线方程为 .

∴ …………………………(5)

(2)由(1)知: ,

x

2

+ 0 — 0 +

极大

极小

∴ 的单调递增区间是: 和

的单调递减区间是: ………………………………(9)

(3)由(2)知:当x= -1时, 取最小值

当x= 2时, 取最大值

且当 时, ;又当x<0时, ,

所以 的值域为 ………………………………………(13)

23.解:(1) , ,设

则 ,

又 , ,∴ ,即所求 ……(5分)

(2)设 : 联立

得:

∵ ,∴ ,

同理 , ∴ ……(10分)

(3)设 : ,联立

,得: ,∴

∴|AB|=

∴S=

当且仅当m=±2时等号成立。…………………………………(14分)

2010年安徽文科数学高考卷答案及详解(手机能看的)

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机的发生存在着规律性和随机概率的意义。

6.了解等可能件的概率的意义,会用排列组合的基本公式计算一些等可能件的概率。

7.了解互斥、相互独立的意义,会用互斥的概率加法公式与相互独立的概率乘法公式计算一些的概率。

8.会计算在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

第Ⅰ卷(选择题 共50分)

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.

(1)若A= ,B= ,则 =

(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)

答案:C 解析:画数轴易知.

(2)已知 ,则i( )=

(A) (B) (C) (D)

答案:B 解析:直接计算.

(3)设向量 , ,则下列结论中正确的是

(A) (B)

(C) (D) 与 垂直

答案:D 解析:利用公式计算,用排除法.

(4)过 点(1,0)且与直线x-2y-2=0平行的直线方程是

(A)x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D)x+2y-1=0

答案:A 解析:利用点斜式方程.

(5)设数列{ }的前n项和 = ,则 的值为

(A) 15 (B) 16 (C) 49 (D)64

答案:A 解析:利用 =S8-S7,即前8项和减去前7项和.

(6)设abc>0,二次函数f(x)=ax2+bx+c的图像可能是

答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合abc>0产生矛盾,用排除法易知.

(7)设a= ,b= ,c= ,则a,b,c的大小关系是

(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a

答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.

(8)设x,y满足约束条件 则目标 函数z=x+y的最大值是

(A)3 (B) 4 (C) 6 (D)8

答案:C 解析:画出可行域易求.

(9)一个几何体的三视图如图,该几何体的表面积是

(A)372 (C)292

(B)360 (D)280

答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.

(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是

(A) (B) (C) (D)

答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.

数 学(文科)(安徽卷)

第Ⅱ卷(非选择题共100分)

二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置?

(11)命题“存在x∈R,使得x2+2x+5=0”的否定是

答案:对任何X∈R,都有X2+2X+5≠0

解析:依据“存在”的否定为“任何、任意”,易知.

(12)抛物线y2=8x的焦点坐标是

答案:(2,0) 解析:利用定义易知.

(13)如图所示,程序框图(算法流程图)的输出值x=

答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.

(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .

答案:5.7% 解析: , ,易知 .

(15)若a>0 ,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是 . (写出所有正确命题的编号).

①ab≤1; ② + ≤ ; ③a2+b2≥2; ④a3+b3≥3;

答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利用 易知③正确

三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.

(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA= .

(1)求

(2)若c-b= 1,求a的值.

(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.

解:由cosA=1213 ,得sinA= =513 .

又12 bc sinA=30,∴bc=156.

(1) =bc cosA=156?1213 =144.

(2)a2=b2+c2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2?156?(1-1213 )=25,

∴a=5

(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率 .

(1)求椭圆E的方程;

(2)求∠F1AF2的角平分线所在直线的方程.

(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.

解:(1)设椭圆E的方程为 由e=12 ,得ca =12 ,b2=a2-c2 =3c2. ∴ 将A(2,3)代入,有 ,解得:c=2, 椭圆E的方程为

(Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为 y=34 (X+2),

即3x-4y+6=0. 直线AF2的方程为x=2. 由椭圆E的图形知,

∠F1AF2的角平分线所在直线的斜率为正数.

设P(x,y)为∠F1AF2的角平分线所在直线上任一点,

则有

若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去.

于是3x-4y+6=-5x+10,即2x-y-1=0.

所以∠F1AF2的角平分线所在直线的方程为2x-y-1=0.

18、(本小题满分13分)

某市2010年4月1日—4月30日对空气 污染指数的检测数据如下(主要污染物为可吸入颗粒物):

61,76,70,56,81,91,92,91,75 ,81,88,67,101,103,95,91,

77,86,81,83,82,82,64,79,86,85,75,71,49,45,

(Ⅰ) 完成频率分布表;

(Ⅱ)作出频率分布直方图;

(Ⅲ)根据国家标准,污 染指数在0~50之间时 ,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。

请你依据所给数据和上述标准,对 该市的空气质量给出一个简短评价.

(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识.

解:(Ⅰ) 频率分布表:

分 组 频 数 频 率

[41,51) 2 230

[51,61) 1 130

[61,71) 4 430

[71,81) 6 630

[81,91) 10 1030

[91,101) 5 530

[101,111) 2 230

(Ⅱ)频率分布直方图:

(Ⅲ)答对下述两条中的一条即可:

(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.

(ii)轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.

(19) (本小题满分13分)

如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,

(Ⅰ)求证:FH∥平面EDB;

(Ⅱ)求证:AC⊥平面EDB;

(Ⅲ)求四面体B—DEF的体积;

(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.

(Ⅰ) 证:设AC与BD交于点G,则G为AC的中点. 连EG,GH,由于H为BC的中点,故GH∥AB且 GH= AB 又EF∥AB且 EF= AB

∴EF∥GH. 且 EF=GH ∴四边形EFHG为平行四边形.

∴EG∥FH,而EG 平面EDB,∴FH∥平面EDB.

(Ⅱ)证:由四边形ABCD为正方形,有AB⊥BC.

又EF∥AB,∴ EF⊥BC. 而EF⊥FB,∴ EF⊥平面BFC,∴ EF⊥FH.

∴ AB⊥FH.又BF=FC H为BC的中点,FH⊥BC.∴ FH⊥平面ABCD.

∴ FH⊥AC. 又FH∥EG,∴ AC⊥EG. 又AC⊥BD,EG∩BD=G,

∴ AC⊥平面EDB.

(Ⅲ)解:∵ EF⊥FB,∠BFC=90°,∴ BF⊥平面CDEF.

∴ BF为四面体B-DEF的高. 又BC=AB=2, ∴ BF=FC=

(20)(本小题满分12分)

设函数f(x)= sinx-cosx+x+1, 0﹤x﹤2 ,求函数f(x)的单调区间与极值.

(本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力.

解:由f(x)=sinx-cosx+x+1,0﹤x﹤2 ,

知 =cosx+sinx+1,

于是 =1+ sin(x+ ).

令 =0,从而sin(x+ )=- ,得x= ,或x=32 .

当x变化时, ,f(x)变化情况如下表:

X (0, )

( ,32 )

32

(32 ,2 )

+ 0 - 0 +

f(x) 单调递增↗ +2

单调递减↘ 32

单调递增↗

因此,由上表知f(x)的单调递增区间是(0, )与(32 ,2 ),单调递减区间是( ,32 ),极小值为f(32 )=32 ,极大值为f( )= +2.

(21)(本小题满分13分)

设 , ..., ,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y= x相切,对每一个正整数n,圆 都与圆 相互外切,以 表示 的半径,已知 为递增数列.

(Ⅰ)证明: 为等比数列;

(Ⅱ)设 =1,求数列 的前n项和.

(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.

解:(Ⅰ)将直线y= x的倾斜角记为 , 则有tan = ,sin = 12 .

设Cn的圆心为( ,0),则由题意知 = sin = 12 ,得 = 2 ;同理 ,题意知 将 = 2 代入,解得 rn+1=3rn.

故{ rn }为公比q=3的等比数列.

(Ⅱ)由于r1=1,q=3,故rn=3n-1,从而 =n? ,

记Sn= , 则有 Sn=1+2?3-1+3?3-2+………+n? . ①

=1?3-1+2?3-2+………+(n-1) ? +n? . ② ①-②,得

=1+3-1 +3-2+………+ -n? = - n? = –(n+ )?

Sn= – (n+ )? .

文章标签: # 考查 # 答案 # 12