您现在的位置是: 首页 > 教育趋势 教育趋势

高考物理大题磁场公式,物理磁场高考真题

tamoadmin 2024-07-25 人已围观

简介1.环形电流产生的磁场.......急啊...T^T2.2016年高考物理磁场知识点有哪些3.高考常用的物理公式4.一道高三物理高考题 磁场方面的5.高考物理常考公式高考物理,需掌握以下基本公式与二级结论,记熟二级结论并能熟练应用更为关键。高中物理重要公式与二级结论。一.力?物体的平衡: 1.N个力平衡,则任意一个力与其它力的合力等大反向。.2.三个大小相等的力平衡,力之间的夹角为120度3.物

1.环形电流产生的磁场.......急啊...T^T

2.2016年高考物理磁场知识点有哪些

3.高考常用的物理公式

4.一道高三物理高考题 磁场方面的

5.高考物理常考公式

高考物理大题磁场公式,物理磁场高考真题

高考物理,需掌握以下基本公式与二级结论,记熟二级结论并能熟练应用更为关键。

高中物理重要公式与二级结论。

一.力?物体的平衡:

1.N个力平衡,则任意一个力与其它力的合力等大反向。.

2.三个大小相等的力平衡,力之间的夹角为120度

3.物体沿斜面匀速下滑,则?.

4.两个一起运动的物体“刚好脱离”时:?

恰接触不挤压,弹力为零。此时速度、加速度相等,此后不等.

5.同一根轻绳上的张力处处相等。.

6.物体受三个不共线力而处于平衡状态,则这三个力必交于一点(三力汇交原理).

7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法。

二.直线运动:

1.匀变速直线运动:?

平均速度:?

时间等分时:

中间位置的速度:

纸带处理求速度、加速度:

2.初速度为零的匀变速直线运动的比例关系:

等分时间:相等时间内的位移之比 ?1:3:5:……

等分位移:相等位移所用的时间之比 

3.竖直上抛运动的对称性:t上=?t下,V上=?-V下

4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离.

5.“S=3t+2t2”:a=4m/s2 ,V0=3m/s.

6.追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.

7.运动的合成与分解中:

船头垂直河岸过河时,过河时间最短.

船的合运动方向垂直河岸时,过河的位移最短.

8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解.

三.牛顿运动定律:

1.超重、失重(选择题可直接应用,不是重力发生变化)

超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.

失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。有完全失重(加速度向下为g).

2.几个临界问题:?   ?

3.速度最大时往往合力为零:

4.牛顿第二定律的瞬时性:

不论是绳还是弹簧:剪断谁,谁的力立即消失;不剪断时,绳的力可以突变,弹簧的力不可突变.

四.圆周运动、?万有引力:

1.向心力公式:?.?

2.同一皮带或齿轮上线速度处处相等,同一轮子上角速度相同.

3.在非匀速圆周运动(竖直平面内的圆周运动)中使用向心力公式的办法:沿半径方向的合力是向心力.

4.竖直平面内的圆运动:

(1)“绳”类:最高点最小速度

(此时绳子的张力为零),最低点最小速度

(2)“杆”:最高点最小速度0(此时杆的支持力为mg),最低点最小速度

5.开普勒第三定律:T2/R3=K(=4π2/GM){K:常量(与行星质量无关,取决于中心天体的质量)}.

6.万有引力定律:F=GMm/r2?=mv2/r=mω2r=m4π2r/T2?(G=6.67×10-11N?m2/kg2)

7.地球表面的万有引力等于重力:GMm/R2=mg;g=GM/R2(黄金代换式)

8.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2

(轨道半径变大时,线速度变小,角速度变小,加速度变小,势能变大,周期变大)

9.第一(二、三)宇宙速度V1=(g地R地)1/2=(GM/R地)1/2=7.9km/s(注意计算方法);V2=11.2km/s;V3=16.7km/s

10.地球同步卫星:T=24h,h=3.6×104km=5.6R地 (地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同)

11.卫星的最小发射速度和最大环绕速度均为V=7.9km/s,卫星的最小周期约为86分钟(环地面飞行的卫星)

12.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。

13。物体在恒力作用下不可能作匀速圆周运动

14。圆周运动中的追赶问题(钟表指针的旋转和天体间的相对运动):?,其中T1<T2。

五.机械能:

1.求功的途径:

①用定义求恒力功.②用动能定理(从做功的效果)或能量守恒求功.

③由图象求功.④用平均力求功(力与位移成线性关系).

⑤由功率求功.

2.功能关系--------功是能量转化的量度,功不是能.

⑴重力所做的功等于重力势能的减少(数值上相等)

⑵电场力所做的功等于电势能的减少(数值上相等)

⑶弹簧的弹力所做的功等于弹性势能的减少(数值上相等)

⑷分子力所做的功等于分子势能的减少(数值上相等)

⑷合外力所做的功等于动能的增加(所有外力)

⑸只有重力和弹簧的弹力做功,机械能守恒

⑹克服安培力所做的功等于感应电能的增加(数值上相等)

(7)除重力和弹簧弹力以外的力做功等于机械能的增加

(8)功能关系:摩擦生热Q=f?S相对?(f滑动摩擦力的大小,ΔE损为系统损失的机械能,Q为系统增加的内能)

(9)静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做正功、负功、还可以不做功,但会摩擦生热。

(10)作用力和反作用力做功之间无任何关系,?但冲量等大反向。一对平衡力做功不是等值异号,就是都不做功,但冲量关系不确定。

3.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能.

4.发动机的功率P=Fv,当合外力F=0时,有最大速度vm=P/f (注意额定功率和实际功率).

5.00≤α<900?做正功;900<α≤1800做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功).

6.能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.

六.动量:

1.同一物体某时刻的动能和动量大小的关系:?

2.碰撞的分类:

①弹性碰撞——动量守恒,动能无损失

②完全非弹性碰撞——?动量守恒,动能损失最大。(以共同速度运动)

③非完全弹性碰撞——?动量守恒,动能有损失。碰撞后的速度介于上面两种碰撞的速度之间(大物碰静止的小物,大物不可能速度为零或反弹)

3.一维弹性碰撞:?动物碰静物:?V2=0,

(质量大碰小,一起向前;质量相等,速度交换;小碰大,向后转)

4.A追上B发生碰撞,满足三原则:

①动量守恒②动能不增加?③合理性原则{A不穿过B(?)}

5.小球和弹簧:①A、B两小球的速度相等为弹簧最短或最长或弹性势能最大时

②弹簧恢复原长时,A、B球速度有极值:若MA≥MB时,B球有最大值,A球有最小值;若MA<MB时,A球最小值为零,B球速度可求,但不为极值.(如图)

6.解决动力学问题的三条思路:力、功能、动量?

七.机械振动和机械波:

1.物体做简谐振动:

①在平衡位置达到最大值的量有速度、动能

②在最大位移处达到最大值的量有回复力、加速度、势能

③通过同一点有相同的位移、速率、回复力、加速度、动能、势能、可能有不同的运动方向

④经过半个周期,物体运动到对称点,速度大小相等、方向相反。

⑤经过一个周期,物体运动到原来位置,一切参量恢复。

2.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”

3.波动图形上,介质质点的振动方向:“上坡下,下坡上”;振动图像中介质质点的振动方向为“上坡上,下坡下”.(要区分开)

4.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比(机械波的波速只有介质决定)。

5.波动中,所有质点都不会随波逐流,所有质点的起振方向都相同?

6.两列频率相同、且振动情况完全相同的波,在相遇的区域能发生干涉。波峰与波峰(波谷与波谷)相遇处振动加强(△s=?±?kλk=0、1、2、3……);波峰与波谷相遇处振动减弱(△s=?±(2k+1)λ/2?k=0、1、2、3……)干涉和衍射是波的特征。

7.受迫振动时,振动频率等于驱动力频率,与固有频率无关.只有当驱动力频率等于固有频率时会发生共振.

八.热学

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10—10米,原子核直径数量级10—15米

2.分子质量m=M/N?(M为摩尔质量,N为阿伏加德罗常数);分子体积为V0=V/N?(V为摩尔体积,注意:如果是气体,则为分子的占有体积)

3.布朗运动是微粒的运动,不是分子的运动.

4.分子势能用分子力做功来判断,r0处分子势能最小,分子力为零.

5.分析气体过程有两条路:一是用参量分析(PV/T=C)、二是用能量分析(ΔE=W+Q)。内能变化看温度,做功情况看体积,吸放热则综合前两项考虑

6.一定质量的理想(分子力不计)气体,内能看温度,做功看体积,吸热放热综合以上两项用能量守恒分析。

九.电场:

1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值(减少量):?。

2.粒子飞出偏转电场时“速度的反向延长线,通过沿电场方向的位移的中心”。

3.讨论电荷在电场里移动过程中电场力的功基本方法:把电荷放在起点处,标出位移方向和电场力的方向,分析功的正负,并用W=FS计算其大小;或用W=qU计算.

4.处于静电平衡的导体内部合场强为零,整个是个等势体,其表面是个等势面.

5.电场线的疏密反映E的大小;沿电场线的方向电势越来越低;电势与场强之间没有联系.

6.电容器接在电源上,电压不变;?断开电源时,电容器电量不变;改变两板距离,场强不变。

7.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。

8.带电粒子在交变电场中的运动:

①直线运动:不同时刻进入,可能一直不改方向的运动;可能时而向左时而向右运动;可能往返运动(可用图像处理)

②垂直进入:若在电场中飞行时间远远小于电场的变化周期,则近似认为在恒定电场中运动(处理为类平抛运动);若不满足以上条件,则沿电场方向的运动处理同①

③带电粒子在电场和重力场中做竖直方向的圆周运动用等效法:当重力和电场力的合力沿半径且背离圆心处速度最大,当其合力沿半径指向圆心处速度最小.

9.沿电场线的方向电势越来越低,电势和场强大小没有联系.

十.恒定电流:

1.电流的微观定义式:I=nqsv

2.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。

3.电路中的一个滑动变阻器阻值发生变化,有并同串反关系:电阻增大,与它并联的电阻上电流或电压变大,?与它串联的电阻上电流或电压变小;电阻减小,与它并联的电阻上电流或电压变小,?与它串联的电阻上电流或电压变大.

4.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。

外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。

5.画等效电路的办法:始于一点(电源正极),止于一点(电源负极),盯住一点(中间等势点),步步为营。

6.纯电阻电路中,内、外电路阻值相等时输出功率最大(R外=r),;

7.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。稳定时,与它串联的电阻是虚设,如导线。在电路变化时电容器有充、放电电流。

恒定电流实验:

1.?考虑电表内阻的影响时,电压表和电流表在电路中,?既是电表,又是电阻。

2.?选用电压表、电流表:

①?测量值不许超过量程。

②?测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。

③?电表不得小偏角使用,偏角越小,相对误差越大?。

3.选欧姆表时,指针偏角应在三分之一到三分之二之间(选档、换档后,经过“调零”才能进行测量)。.

4.选限流用的滑动变阻器:在能把电流限制在允许范围内的前提下选用总阻值较小的变阻器调节方便;?选分压用的滑动变阻器:阻值小的便于调节且输出电压稳定,但耗能多。

5.分压式和限流式电路的选择:

①题目要求电压或电流从零可调(校对电路、测伏安特性曲线),一定要用分压式。?

②滑动变阻器的最大值比待测电阻的阻值小很多时,限流式不起大作用,要用分压式。

③用限流式时不能保证用电器安全时用分压式。

④分压和限流都可以用时,限流优先(能耗小)。

6.伏安法测量电阻时,电流表内、外接的选择:

①RX远大于RA时,用内接法,误差来源于电流表分压,测量值偏大;

②RV远大于RX时,用外接法,误差来源于电压表分流,测量值偏小.

③?大于?时,?用内接法;?小于?时,?用外接法

7.电压表或电流表中,电流大小与其偏转角成正比,一般有左进左偏,右进右偏

8.测电阻常用方法:

①伏安法②替代法?③半偏法④比较法

9.已知内阻的电压表可当电流表使用;已知内阻的电流表可当电压表使用;已知电流的定值电阻可当电压表使用;已知电压的定值电阻可当电流表使用.

10.欧姆表的中值电阻刚好等于其欧姆表的内阻.

十一.磁场:

1.圆形磁场区域:带电粒子沿半径方向进入,则出磁场时速度方向必过圆心

2.粒子速度垂直于磁场时,做匀速圆周运动:?,?(周期与速率无关)。

3.粒子径直通过正交电磁场(离子速度选择器):粒子穿过磁场的有关计算,抓几何关系,即入射点与出射点的半径和它们的夹角

4.最小圆形磁场区域的计算:找到磁场边界的两点,以这两点的距离为直径的圆面积最小

5.圆形磁场区域中飞行的带电粒子的最大偏转角为进入点和出点的连线刚好为磁场的直径

6.要知道以下器件的原理:质谱仪、速度选择器、磁流体发电机、霍耳效应、电磁流量计、地磁场、磁电式电表原理、回旋加速器、电磁驱动、电磁阻尼、高频焊接等.

7。带电粒子在匀强电场、匀强磁场和重力场中,如果做直线运动,一定做匀速直线运动。如果做匀速圆周运动,重力和电场力一定平衡,只有洛仑兹力提供向心力。

8。电性相同的电荷在同一磁场中旋转时,旋转方向相同,与初速度方向无关。

十二.电磁感应:

1.?楞次定律的若干推论:

(1)内外环电流或者同轴的电流方向:“增反减同”

(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

(3)磁场“╳增加”与“减少”感应电流方向一样,反之亦然。

(4)磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势

2.运用楞次定律的若干经验:

①内外环电路或者同轴线圈中的电流方向:“增反减同”

②导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

③“×增加”与“?减少”,感应电流方向一样,反之亦然。

④单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。?通电螺线管外的线环则相反。

⑤楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

⑥感应电流的方向变否,可以看B-t图像中斜率正负是否变化.

3.磁通量的计算中,无论线圈有多少匝,计算时都为φ=BS

4.自感现象中,灯泡是否闪亮,要看后来的电流是否比原来大,若是,则闪亮,否则不闪亮.日光灯线路连接.

5.楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

6.法拉第电磁感应定律求出的是平均电动势,在产生正弦交流电情况下只能用来求感生电量,不能用来求功和能量。

7.直杆平动垂直切割磁感线时所受的安培力:?

8.转杆(轮)发电机:

9.感生电量:?

十三.交流电:

1.正弦交流电的产生:

中性面为垂直磁场方向,此时磁通量最大,磁通量的变化率为零,电动势为零

线圈平面平行于磁场方向时,?此时磁通量最小,磁通量的变化率最大,电动势最大。

最大电动势:与Em此消彼长,一个最大时,另一个为零。

2.交流电中,注意有效值和平均值的区别,能量用有效值,电量用平均值.

3.求电量的方法有两种:①用平均电动势得q=nΔφ/R?②动量定理

4.非正弦交流电的有效值的求法:I2RT或U2T/R等于一个周期内产生的总热量.

5.理想变压器原副线之间量的决定关系:电压原线圈决定副线圈;电流副线圈决定原线圈;功率副线圈决定原线圈

6.变压器中说负载增加,实为并联的用电器增多,负载电阻减小.

7.远距离输电计算的思维模式要记好.

8.自藕变压器和滑动变阻器,电流互感器和电压互感器要区分.

9.理想变压器原副线圈之间相同的量:?

十四.电磁场和电磁波:

1.电磁振荡中电容器上的电量q与电流i的关系总是相反。

2.?电磁场理论?:

 ①变化的磁(电)场产生电(磁)场

 ②均匀变化的磁(电)场产生的稳定的电(磁)场

 ③周期性变化的磁(电)场产生周期性变化的电(磁)场

3.感抗为XL=2πLf;容抗为XC=1/2πfc

十五.光的反射和折射:

1.光通过平行玻璃砖,出玻璃砖时平行于原光线;光过棱镜,向底边偏转.

2.光线射到球面和柱面上时,半径是法线.

3.单色光对比的七个量:偏折角、折射率、波长、频率、介质中的光速、光子能量、临界角.

4.可见光中:红光的折射率最小,紫光的折射率最大;红光在介质中的光速最大,紫光在介质中的光速最小;红光最不易发生全反射,紫光最易发生全反射;红光的波动性比紫光强,粒子性比紫光弱;红光的干涉条纹(或衍射条纹的中间条纹)间距比紫光大;紫光比红光更易引起光电效应.

5.视深公式h’=h/n?(水中看七色球,感觉红球最深,紫球最浅)

十六.光的本性:

1.双缝干涉图样的“条纹宽度”(相邻明条纹中心线间的距离):?。

2.增透膜增透绿光,其厚度为绿光在膜中波长的四分之一。

3.薄膜干涉中用标准样板(空气隙干涉)检查工件表面情况:条纹向窄处弯是凹,向宽处弯是凸(左凹右凸)。

4.电磁波穿过介质面时,频率(和光的颜色)不变。

十七.量子论初步

1.个别光子表现出粒子性;大量光子表现出波动性

2.跃迁中,从n能级跃迁到基态时,将会放出Cn2种不同频率的光.

3.能引起跃迁的,若用光照,能电离可以,否则其能量必须等于能级差,才能使其跃迁;若用实物粒子碰撞,只要其动能大于(或等于)能级差,就能跃迁.

4.个别光子表现为粒子性,大量光子表现为波动性.

十七.原子物理:?

1.磁场中的衰变:外切圆是?衰变,内切圆是?衰变,半径与电量成反比。

2.衰变方程、人工核转变、裂变、聚变这四种方程要区分

3.1u相当于931.5MeV,注意题目中的质量单位是Kg还是u.?

4.核反应总质量增大时吸能,总质量减少时放能,仅在人工转变中有一些是吸能的核反应。

其它常见非常有用的经验结论:

1、物体沿倾角为α的斜面匀速下滑------?=tanα?;

物体沿光滑斜面滑下a=gsinα?物体沿粗糙斜面滑下a=gsinα-gcosα

2、两物体沿同一直线运动,在速度相等时,距离?有最大或最小?;

3、物体沿直线运动,速度最大的条件是:?a=0或合力为零?。

4、两个共同运动的物体刚好脱离时,两物体间的弹力为?=0,加速度?相等?。

5、两个物体相对静止,它们具有相同的?速度;

6、水平传送带以恒定速度运行,小物体无初速度放上,达到共同速度过程中,摩擦生热等于小物体的动能。

7、一定质量的理想气体,内能大小看?温度,做功情况看体积,吸热、放热综合以上两项用能量守恒定律分析。

8、电容器接在电源上,?电压?不变;断开电源时,电容器上电量不变;改变两板距离?E?不变。

10、磁场中的衰变:外切圆是?α衰变,内切圆是?β?衰变,α,β是大圆。

11、直导体杆垂直切割磁感线,所受安培力F=?B2L2V/R。

12、电磁感应中感生电流通过线圈导线横截面积的电量:Q=N△Ф/R。

13、解题的优选原则:满足守恒则选用守恒定律;与加速度有关的则选用牛顿第二定律F=ma;与时间直接相关则用动量定理;与对地位移相关则用动能定理;与相对位移相关(如摩擦生热)则用能量守恒。

环形电流产生的磁场.......急啊...T^T

物理高考必考公式如下:

高中物理知识点总结一:直线运动

理解口诀:

1、物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2、运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g。竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

高中物理知识点总结二:曲线运动、万有引力

理解口诀:

1、运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。

2、圆周运动向心力,供需关系在心里,径向合力提供足,供求平衡不心离;物理方程很关键,一串公式是武器。

3、万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快,距离越远越慢行,同步卫星速度定,定点赤道上空行。

高中物理知识点总结三:力(常见的力、力的合成与分解)

1)常见的力

2)力的合成与分解

四、动力学(运动和力)

五、振动和波(机械振动与机械振动的传播)

六、冲量与动量(物体的受力与动量的变化)

七、功和能(功是能量转化的量度)

八、分子动理论、能量守恒定律

九、气体的性质

十、电场

十一、恒定电流

十二、磁场

十三、电磁感应

十四、交变电流(正弦式交变电流)

2016年高考物理磁场知识点有哪些

根据麦克斯韦理论

变化的电场产生磁场

B=k*dI/dt

所以匀速变化,dI/dt为常数,产生磁场为恒定的

加速边大,即dI/dt变大,所以磁场增大

dI/dt是微分,也就是微元,d可以理解成你们高中所说的得儿它

应该说这个公式应付高中知识是没问题的

高考常用的物理公式

1磁场

(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。

(2)磁场的方向:物理学规定,在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点磁场的方向。

(3)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。

(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。

(4)磁场的基本性质:磁场对处在它里面的磁极或电流有磁场力的作用。磁极和磁极之间、磁场和电流之间、电流和电流之间的相互作用都是通过磁场来传递的。

(5)安培分子电流说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。

(6)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。

2磁感线

(1)磁感线:是形象地描述磁场而引入的有方向的曲线。在曲线上,每一点切线方向都在该点的磁场方向上,曲线的疏密反映磁场的强弱。

(2)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。

(3)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。

(4)磁感线的特点:

a.磁感线是闭合的曲线,磁体的磁感线在磁体外部由N极到S极,内部由S极到N极。

b.任意两条磁感线不能相交。

(5)几种典型磁场的磁感线的分布:

①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。

③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。

④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。

3磁感应强度

(1)定义:磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位:(T),1T=1N/A?m。磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。

(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。

(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。

(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。

(5)磁感应强度是描述磁场的力的性质的物理量。磁感应强度是矢量,其方向就是该点的磁场方向。

4地磁场

地球的磁场与条形磁体的磁场相似,其主要特点有三个:

(1)地磁场的N极在地球南极附近,S极在地球北极附近。

(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下。

(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北。

5安培力

(1)定义:磁场对通电导线的作用力叫安培力。

(2)安培力大小F=BIL。式中F、B、I要两两垂直,L是有效长度。若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度。安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

(2)安培力的方向由左手定则判定。方向:安培力的方向可以用左手定则来判断。安培力方向垂直磁场方向,垂直电流方向,即垂直于电流方向和磁场方向决定的平面。

(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零。

6洛伦兹力

洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

(1)洛伦兹力的大小f=qvB,条件:v⊥B。当v∥B时,f=0。

(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功。

(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现。所以洛伦兹力的方向与安培力的方向一样也由左手定则判定。

(4)在磁场中静止的电荷不受洛伦兹力作用。

7磁场对通电导线的作用

1、磁感线是闭合曲线

磁感线与电场线不同,在磁体外部是从N极指向S有,磁体内部则从S极指向N极,从而形成闭合曲线。

2、安培定则

用安培定则判断通电线圈(或螺线管)的磁感线时,拇指指向为线圈(或螺线管)内部的磁感线方向,其外部与此方向相反。

3、磁感应强度

(1)磁感应强度是描述磁场的物理量,由磁场自身决定,与是否放入检验电流无关。

(2)磁感应强度是矢量,其方向就是该点磁场方向。当磁场叠加时,磁感应强度矢量合成。

4、安培力

(1)安培力的大小不仅与B、I、L的大小有关,还与电流方向与磁场方向间的夹角有关。 当通电直导线与磁场方向垂直时,通电导线所受安培力最大,这时安培力F=BIL。

当两者平行最小为零,对于电流方向与磁场方向成任意角的情况,可以把磁感应强度B分解为垂直电流方向和平行电流方向两种情况处理。

(2)F=BIL只适用于匀强磁场,对非匀强磁场中,当L足够短时,可以认为导线所在处的磁场是匀强磁场。

(3)安培力的方向要用左手定则判断,垂直磁感应强度方向,这跟电场力与电场强度方向之间的关系是不同的。

6、安培力的应用——磁电式仪表

(1)根据通电导线在磁场中会受到安培力的作用这一原理制成的仪表,称为磁电式仪表。

(3)磁电式仪表原理

由于磁场对电流的作用力方向与电流方向有关,因此,如果改变通过电流表的电流方向,磁场对电流的作用力方向也会随着改变,指针和线圈的偏转方向也就随着改变,据此便可判断出被测电流的方向。

磁场对电流的作用力跟电流成正比,线圈中的电流越大,受到的作用力也越大,指针和线圈的偏转角度也越大.因此,指针偏转角度的大小反映了被测电流的大小.只要通过实验把两者一一对应的关系记录下来,并标示在刻度盘上,这样在使用中,就可以在刻度盘上直接读出被测电流的大小。

8带电粒子在磁场中的运动规律

在带电粒子只受洛伦兹力作用的条件下(电子、质子、α粒子等微观粒子的重力通常忽略不计),

(1)若带电粒子的速度方向与磁场方向平行(相同或相反),带电粒子以入射速度v做匀速直线运动。带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内,以入射速率v做匀速圆周运动。①轨道半径公式:r=mv/qB②周期公式:T=2πm/qB

带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下:(a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

9带电粒子在复合场中运动

(1)带电粒子在复合场中做直线运动

①带电粒子所受合外力为零时,做匀速直线运动,处理这类问题,应根据受力平衡列方程求解。

②带电粒子所受合外力恒定,且与初速度在一条直线上,粒子将作匀变速直线运动,处理这类问题,根据洛伦兹力不做功的特点,选用牛顿第二定律、动量定理、动能定理、能量守恒等规律列方程求解。

(2)带电粒子在复合场中做曲线运动

①当带电粒子在所受的重力与电场力等值反向时,洛伦兹力提供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。处理这类问题,往往同时应用牛顿第二定律、动能定理列方程求解。

②当带电粒子所受的合外力是变力,与初速度方向不在同一直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨迹既不是圆弧,也不是抛物线,一般处理这类问题,选用动能定理或能量守恒列方程求解。

③由于带电粒子在复合场中受力情况复杂运动情况多变,往往出现临界问题,这时应以题目中“最大”、“最高”“至少”等词语为突破口,挖掘隐含条件,根据临界条件列出方程,再与其他方程联立求解。

一道高三物理高考题 磁场方面的

1.胡克定律:F = Kx (x为伸长量或压缩量,K为倔强系数,只与弹簧的原长、粗细和材料有关)

2.重力:G = mg (g随高度、纬度、地质结构而变化)

3 、求F、的合力的公式:

F=

  合力的方向与F1成角:

tg=

注意:(1) 力的合成和分解都均遵从平行四边行法则。

(2) 两个力的合力范围: F1-F2 F F1 +F2

(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

4、两个平衡条件:

( 1 )共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力

为零。

F=0 或Fx=0 Fy=0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。

[2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力

(一个力)的合力一定等值反向

( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零.

力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离)

5、摩擦力的公式:

(1 ) 滑动摩擦力: f= N

说明 : a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

b.为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面

积大小、接触面相对运动快慢以及正压力N无关.

(2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.

大小范围: O f静 fm (fm为最大静摩擦力,与正压力有关)

说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

b、摩擦力可以作正功,也可以作负功,还可以不作功。

c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。

6、 浮力: F= Vg (注意单位)

7、 万有引力: F=G

(1). 适用条件 (2) .G为万有引力恒量

( 3 )在天体上的应用:(M一天体质量 R一天体半径 g一天体表面重力

加速度)

a 、万有引力=向心力

G

b、在地球表面附近,重力=万有引力

mg = G g = G

c.第一宇宙速度

mg = m V=

8、库仑力:F=K (适用条件)

9.电场力:F=qE (F 与电场强度的方向可以相同,也可以相反)

10、磁场力:

(1)洛仑兹力:磁场对运动电荷的作用力。

公式:f=BqV (BV) 方向一左手定

(2)安培力 : 磁场对电流的作用力。

公式:F= BIL (BI) 方向一左手定则

11、 牛顿第二定律: F合 = ma 或者 Fx = m ax Fy = m ay

理解:(1)矢量性 (2)瞬时性 (3)独立性

(4) 同体性 (5)同系性 (6)同单位制

12、匀变速直线运动:

基本规律: Vt = V0 + a t S = vo t +a t2几个重要推论:

(1) Vt2 - V02 = 2as (匀加速直线运动:a为正值 匀减速直线运动:a为正值)

(2) A B段中间时刻的即时速度:

Vt/ 2 == ( (3) AB段位移中点的即时速度:

Vs/2 =

匀速:Vt/2 =Vs/2 ; 匀加速或匀减速直线运动:Vt/2 <Vs/2

(4)初速为零的匀加速直线运动,在1s 、2s、3s……ns内的位移之比为12:22:32

……n2; 在第1s 内、第 2s内、第3s内……第ns内的位移之比为1:3:5……

(2n-1); 在第1米内、第2米内、第3米内……第n米内的时间之比为1::

……(

(5)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的位移之差为一常数:s = aT2 (a一匀变速直线运动的加速度 T一每个时间间隔的时间)

13.竖直上抛运动: 上升过程是匀减速直线运动,下落过程是匀加速直线运动。全过程是初速度为VO、加速度为g的匀减速直线运动。

(1)上升最大高度: H =

(2) 上升的时间: t=

(3) 上升、下落经过同一位置时的加速度相同,而速度等值反向

(4) 上升、下落经过同一段位移的时间相等。

从抛出到落回原位置的时间:t =

(6) 适用全过程的公式: S = Vo t 一g t2 Vt = Vo一g t

Vt2 一Vo2 = 一2 gS ( S、Vt的正、负号的理解)

14、匀速圆周运动公式

线速度: V= R=2f R= 角速度:=

向心加速度:a =2 f2 R

向心力: F= ma = m2 R= mm4mf2 R

注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心。

(2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。

15 直线运动公式:匀速直线运动和初速度为零的匀加速直线运动的合运动

水平分运动: 水平位移: x= vo t 水平分速度:vx = vo

竖直分运动: 竖直位移: y =g t2 竖直分速度:vy= g t

tg = Vy = Votg Vo =Vyctg

V = Vo = Vcos Vy = Vsin y Vo

在Vo、Vy、V、X、y、t、七个物理量中,如果 x ) vo

已知其中任意两个,可根据以上公式求出其它五个物理量。 vy v

18 功 : W = Fs cos (适用于恒力的功的计算)

(1)理解正功、零功、负功

(2) 功是能量转化的量度

重力的功------量度------重力势能的变化

电场力的功-----量度------电势能的变化

分子力的功-----量度------分子势能的变化

合外力的功------量度-------动能的变化

19 动能和势能: 动能: Ek =

重力势能:Ep = mgh (与零势能面的选择有关)

20 动能定理:外力对物体所做的总功等于物体动能的变化(增量)。

公式: W合= Ek = Ek2 一Ek1 = 21 机械能守恒定律:机械能 = 动能+重力势能+弹性势能

条件:系统只有内部的重力或弹力做功.

公式: mgh1 + 或者 Ep减 = Ek增

22 功率: P = (在t时间内力对物体做功的平均功率)

P = FV (F为牵引力,不是合外力;V为即时速度时,P为即时功率;V为平均速度时,P为平均功率; P一定时,F与V成正比)

23 简谐振动: 回复力: F = 一KX 加速度:a = 一

单摆周期公式: T= 2 (与摆球质量、振幅无关)

弹簧振子周期公式:T= 2 (与振子质量有关、与振幅无关)

24、 波长、波速、频率的关系: V= f = (适用于一切波)

三、电磁学

(一)、直流电路

1、电流强度的定义: I = (I=nesv)

2、电阻定律:( 只与导体材料性质和温度有关,与导体横截面积和长度无关)

3、电阻串联、并联:

串联:R=R1+R2+R3 +……+Rn

并联: 两个电阻并联: R=

4、欧姆定律:(1)、部分电路欧姆定律: U=IR

(2)、闭合电路欧姆定律:I = ε r

路端电压: U = -I r= IR R

输出功率: = Iε-Ir =

电源热功率:

电源效率: = =

(5).电功和电功率: 电功:W=IUt 电热:Q=

电功率 :P=IU

对于纯电阻电路: W=IUt= P=IU =( )

对于非纯电阻电路: W=IUt P=IU

(6)电池组的串联每节电池电动势为`内阻为,n节电池串联时

电动势:ε=n 内阻:r=n

(7)、伏安法测电阻:

(二)电场和磁场

1、库仑定律:,其中,Q1、Q2表示两个点电荷的电量,r表示它们间的距离,k叫做静电力常量,k=9.0×109Nm2/C2。(适用条件:真空中两个静止点电荷)

2、电场强度:

(1)定义是:

F为检验电荷在电场中某点所受电场力,q为检验电荷。单位牛/库伦(N/C),方向,与正电荷所受电场力方向相同。描述电场具有力的性质。

注意:E与q和F均无关,只决定于电场本身的性质。(适用条件:普遍适用)

(2)点电荷场强公式:

k为静电力常量,k=9.0×109Nm2/C2,Q为场源电荷(该电场就是由Q激发的),r为场点到Q距离。(适用条件:真空中静止点电荷)

(3)匀强电场中场强和电势差的关系式:

其中,U为匀强电场中两点间的电势差,d为这两点在平行电场线方向上的距离。

3、电势差:

为电荷q在电场中从A点移到B点电场力所做的功。单位:伏特(V),标量。数值与电势零点的选取无关,与q及均无关,描述电场具有能的性质。

4、电场力的功:

5、电势:

为电荷q在电场中从A点移到参考点电场力所做的功。数值与电势零点的选取有关,但与q及均无关,描述电场具有能的性质。

6、电容:(1)定义式:

C与Q、U无关,描述电容器容纳电荷的本领。单位,法拉(F),1F=106μF=1012pF

(2)决定式:

7、磁感应强度:()

描述磁场的强弱和方向,与F、I、L无关。当I // L时,F=0,但B≠0,方向:垂直于I、L所在的平面。

8、带电粒子在匀强磁场中做匀速圆周运动:

轨迹半径:

运动的周期:

(三)电磁感应和交变电流

1、磁通量:(条件,B⊥S)单位:韦伯(Wb)

2、法拉第电磁感应定律:

导线切割磁感线产生的感应电动势: (条件,B、L、v两两垂直)

3、正弦交流电:(从中性面开始计时)

(1)电动势瞬时值:,其中,最大值

(2)电流瞬时值:,其中,最大值 (条件,纯电阻电路)

(3)电压瞬时值:,其中,最大值,是该段电路的电阻。

(4)有效值和最大值的关系: (只适用于正弦交流电)

4、理想变压器:(注意:U1、U2为线圈两端电压)

(条件,原、副线圈各一个)

5、电磁振荡:周期 ,

高考物理常考公式

14.(1)?设粒子第1次经过狭缝后的半径为r1,速度为v1,

,?,解得?。

同理,粒子第2次经过狭缝后的半径?

则?

(2)?设粒子到出口处被加速了n圈,?,?,?,?。

解得:?

(3)?加速电场的频率应等于粒子在磁场中做圆周运动的频率,即?,

当磁感应强度为Bm时,加速电场的频率应为?,粒子的动能?

当?时,粒子的最大动能由Bm决定,?,

解得

当?,粒子的最大动能由fm决定,?

解得14.(1)?设粒子第1次经过狭缝后的半径为r1,速度为v1,

,?,解得?。

同理,粒子第2次经过狭缝后的半径?

则?

(2)?设粒子到出口处被加速了n圈,?,?,?,?。

解得:?

(3)?加速电场的频率应等于粒子在磁场中做圆周运动的频率,即?,

当磁感应强度为Bm时,加速电场的频率应为?,粒子的动能?

当?时,粒子的最大动能由Bm决定,?,

解得

当?,粒子的最大动能由fm决定,?

解得

高考物理常考公式介绍如下:

匀速直线运动的位移公式:x=vt

匀变速直线运动的速度公式:v=v0+at

匀变速直线运动的位移公式:x=v0t+at2/2

向心加速度的关系:a=ω2r a=v2/r a=4π2r/t2

力对物体做功的计算式:w=fl

牛顿第二定律:f=ma

曲线运动的线速度:v=s/t

曲线运动的角速度:ω=θ/t

线速度和角速度的关系:v=ωr

周期和频率的关系:tf=1

功率的计算式:p=w/t

动能定理:w=mvt2/2-mv02/2

重力势能的计算式:ep=mgh

高考物理公式(常用版)

机械能守恒定律:mgh1+mv12/2=mgh2+mv22/2

库仑定律的数学表达式:f=kqq/r2

电场强度的定义式:e= f/q

电势差的定义式:u=w/q

欧姆定律:i=u/r

电功率的计算:p=ui

焦耳定律:q=i2rt

磁感应强度的定义式:b=f/il

安培力的计算式:f=bil

洛伦兹力的计算式:f=qvb

法拉第电磁感应定律:e=δф/δt

导体切割磁感线产生的感应电动势:e=blv。

高考物理重点知识点归纳

一、三种产生电荷的方式:

1、摩擦起电:

(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;

(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;

(3)实质:电子从一物体转移到另一物体;

2、接触起电:

(1)实质:电荷从一物体移到另一物体;

(2)两个完全相同的物体相互接触后电荷平分;

(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;

3、感应起电:把电荷移近不带电的导体,可以使导体带电;

(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;

(2)实质:使导体的电荷从一部分移到另一部分;

(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;

4、电荷的基本性质:能吸引轻小物体;

二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。

三、元电荷:一个电子所带的电荷叫元电荷,用e表示。

1、e=1.6×10-19c;

2、一个质子所带电荷亦等于元电荷;

3、任何带电物体所带电荷都是元电荷的整数倍;

四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,

1、计算公式:F=kQ1Q2/r2(k=9.0×109N.m2/kg2)

2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)

3、库仑力不是万有引力;

五、电场:电场是使点电荷之间产生静电力的一种物质。

1、只要有电荷存在,在电荷周围就一定存在电场;

2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度;

1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷;

2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反)

3、该公式适用于一切电场;4、点电荷的电场强度公式:E=kQ/r2

七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;

八、电场线:电场线是人们为了形象的描述电场特性而人为设的线。

1、电场线不是客观存在的线;

2、电场线的形状:电场线起于正电荷终于负电荷;G:用锯木屑观测电场线.DAT

(1)只有一个正电荷:电场线起于正电荷终于无穷远;

(2)只有一个负电荷:起于无穷远,终于负电荷;

(3)既有正电荷又有负电荷:起于正电荷终于负电荷;

3、电场线的作用:

1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小);

2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向;

4、电场线的特点:

1、电场线不是封闭曲线;2、同一电场中的电场线不向交;

九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀;

1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场

十、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。

1、定义式:UAB=WAB/q;2、电场力作的功与路径无关;

3、电势差又命电压,国际单位是伏特;

十一、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功;

1、电势具有相对性,和零势面的选择有关;2、电势是标量,单位是伏特V;

3、电势差和电势间的关系:UAB=φA-φB;4、电势沿电场线的方向降低;

时,电场力要作功,则两点电势差不为零,就不是等势面;

4、相同电荷在同一等势面的任意位置,电势能相同;

原因:电荷从一电移到另一点时,电场力不作功,所以电势能不变;

5、电场线总是由电势高的地方指向电势低的地方;

6、等势面的画法:相另等势面间的距离相等;

十二、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。

1、数学表达式:U=Ed;

2、该公式的使适用条件是,仅仅适用于匀强电场;

3、d是两等势面间的垂直距离;

十三、电容器:储存电荷(电场能)的装置。

1、结构:由两个彼此绝缘的金属导体组成;

2、最常见的电容器:平行板电容器;

十四、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。

1、定义式:C=Q/U;

2、电容是表示电容器储存电荷本领强弱的物理量;

3、国际单位:法拉简称:法,用F表示

4、电容器的电容是电容器的属性,与Q、U无关;

十五、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×109N.m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;)

1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压;

2、当电容器未与电路相连通时电容器两板所带电荷量不变;

十六、带电粒子的加速:

1、条件:带电粒子运动方向和场强方向垂直,忽略重力;

2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2-1/2mv02;

3、推论:当初速度为零时,Uq=1/2mvt2;

4、使带电粒子速度变大的电场又名加速电场。

文章标签: # 方向 # 磁场 # 电场