您现在的位置是: 首页 > 教育趋势 教育趋势
2014山东高考数学文科,2014年山东文科数学真题
tamoadmin 2024-07-26 人已围观
简介1.新高考数学还分文理科吗2.新高考I卷高考数学试卷真题和答案解析[Word文字版]3.山东省高考科目1.设椭圆方程为:x^/a^ + y^/b^ =1根据一个焦点是F(2,0),可得:a^-b^=2^=4 ①则椭圆的两条准线为:x=a^/2∴两准线距离为2*(a^/2)=λ<=>a^=λ<=>b^=a^-4=λ-4∴椭圆方程为:x^/λ + y^/(λ-4)=12.设F
1.新高考数学还分文理科吗
2.新高考I卷高考数学试卷真题和答案解析[Word文字版]
3.山东省高考科目
1.设椭圆方程为:x^/a^ + y^/b^ =1
根据一个焦点是F(2,0),可得:a^-b^=2^=4 ①
则椭圆的两条准线为:x=±a^/2
∴两准线距离为2*(a^/2)=λ
<=>a^=λ
<=>b^=a^-4=λ-4
∴椭圆方程为:x^/λ + y^/(λ-4)=1
2.设F关于l的对称点为B(x1,y1)
根据对称的含义可知:线段FB被直线l垂直平分
设FB与l相交于P,则P必为FB中点,且l⊥FB
设直线l的斜率为k,则有:kFB=-1/kl=-1/k ②
而FB必过F(2,0)
根据点斜式,kFB=-1/k,F(2,0),可得FB的方程为:
FB:y=(-1/k)*(x-2)
而直线l过A(1,0),根据点斜式可得其方程为:
l:y=k(x-1)
联立FB与l的方程,可得两者交点坐标P为:
P((k^+2)/(k^+1),k/(k^+1))
前方已证P为FB中点,则根据中点坐标公式可得出B(x1,y1):
x1=2*xP-xF
y1=2*yP-yF
将P,F点的坐标代入,可得:
x1=2/(k^+1)
y1=2k/(k^+1)
即B(2/(k^+1),2k/(k^+1))
而B点根据题意知在椭圆上,将其带入第一问求出的椭圆方程,并作整理,可得到关于k^的一元二次方程(含λ):
(λ^-4λ)*(k^)^ + (2λ^-12λ)*k^ + (λ-4)^=0
方程必须存在实根,故有:
△=(2λ^-12λ)^-4*(λ^-4λ)*(λ-4)^≥0
<=>λ≤16/3
而方程是关于k^的方程,k^≥0,∴方程的两个实根必然非负,则有:
两根和:-(2λ^-12λ)/(λ^-4λ)≥0
两根积:(λ-4)^/(λ^-4λ)≥0
结合条件λ>4,可得:4<λ≤6
结合③式,可得到λ的取值范围是:
λ∈(4,16/3]
新高考数学还分文理科吗
一般来说,选择题会有一两个不一样。文科的最后一道大题是理科的倒数第二题,但是比理科的少了一问。理科的最后一道题文科可能没有,其它的题目大家都一样。很多年考试都这样的,偶尔也会变一点。
新高考I卷高考数学试卷真题和答案解析[Word文字版]
新高考数学不分文理科。
312新高考数学不分文理科,是相同的试卷,也就是说,使用同一套试卷的新高考省份,不论物理类考生还是历史类考生,数学考试的难度都是完全一致的。
第一批新高考改革省份有浙江、上海等2省市,2014年启动,2017年首届新高考,高考用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。
第二批新高考改革省份有北京、天津、山东、海南等4省市,2017年启动,2020年首届新高考,高考用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。
第三批新高考改革省份有河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市,2018年启动,2021年首届新高考,取3+1+2高考模式,不分文理科。
第四批新高考改革省份有黑龙江、甘肃、吉林、安徽、江西、贵州、广西等7省份,2021年启动,2024年首届新高考,取3+1+2高考模式,不分文理科。
第五批新高考改革省份有山西、河南、陕西、内蒙古、四川、云南、宁夏、青海等8省份,2022年启动,2025年首届新高考,取3+1+2高考模式,不分文理科。
山东省高考科目
一、新高考I卷高考数学试卷真题和答案解析新高考I卷高考数学试卷真题和答案解析正在快马加鞭的整理当中,考试结束后我们第一时间发布word文字版。考生可以在线点击阅览: ://.creditsailing/zt/gaokao/daxuepaiming.html
二、新高考I卷高考数学卷答题技巧
一、规范书写
高考文科数学答题技巧之一就是规范书写,这一点是文理通用的技巧。卷面评分标准就是规范度,这就要求不但要对、而且要全且规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,“感情分”也就相应低了,所以高考答题书写要工整,保证卷面能得分。
二、讲究策略
对于高考文科数学题要力求做的对、全、得满分,高考文科数学有两种常用方法:
1。分步解答:对于疑难问题,考生可以将它划分为一系列的步骤,先解决问题的一部分,能解到几步就写几步,每进行一步就可得到这一步的分数,也可以把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。从局部到整体,形成思路,获得解题成功。在高考文科数学答题过程中尽量多的列举应用到的公式。
2。跳步解答:当文科数学在解题的某一环节出现问题时,可以跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
三、合理分配时间
1、文科数学就是和时间的斗争。高考文科数学试卷一发下来后,首先把全部问题看一遍。找出其中看上去最容易解答的题,然后定步骤,思考怎么样的顺序解题才最好。
2、切忌不看题目盲目背题,要仔细审题,清楚题目要求你解决什么问题,然后有条不紊迅速解题,提高准确率。
3、解题格式要规范,重点步骤要突出。
4、选择题时间控制在35分中以内。小题小做、巧做、简单做,选择题和填空题要多用数形结合、特殊值验证法等技巧,节约时间。
5、保持心静,以不变应万变。切莫因旁人的翻卷或其他行为干扰自己的解决思路。这些都是高考文科数学应试答题高分技巧。
四、掌握文科数学失分原因
①对题意缺乏正确的理解,应做到慢审题快做题;
②公式记忆不牢,考前一定要熟悉公式、定理、性质等;
③思维不严谨,不要忽视易错点;
④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
正确运用高考文科数学答题技巧,不仅可以预防各种心理障碍造成的不合理丢分和计算失误及笔误,而且能运用科学的检索方法,考出最佳成绩。
三、新高考I卷哪些省份使用
适用地区:山东、福建、湖北、江苏、广东、湖南、河北
四、新高考I卷难吗
河北考生:
考完数学,从考场出来那一刻,头都是沉重的,心里说不出的滋味,感觉填空看着都是灰色。今年的数学试题,总体上出的是中规中矩,但是题型很新颖,很抽象,和平时做的题目完全不是一个水平的题目。选择题部分,也比平时难一些,看着题目很简单,但就是不知道怎么入手解题,大题部分,就更崩溃了,只有两道是有点把握得,剩下的都只答了一半。
总体来讲,试题是比平时要难的,至少难个20分左右。平时也都能考个100来分,这下估计七八十就算了。
山东考生:
我觉得数学试题难度还行,今年发挥的还可以,平时都能考个120分,这次感觉会少一些,题目比去年要难一些。我有做过去年的数学试卷,考了127,今年的数学,能110就很知足了。主要是题目比较烧脑,不像平时的题目那样,一看就知道大概咋解题,高考的数学题,估计很多考生都要比平时低一些,今年的考生应该更明显,确实题目是难了一些。 五、安徽高考数学试卷答案解析 一.2022年新高考I卷高考语文试卷真题和答案解析[Word文字版] ;
山东省高考科目如下:
1、6月7日:语文、历史、政治
2、6月8日:数学(文科)、数学(理科)
3、6月9日:物理、化学
4、6月10日:生物、地理
山东省位于中国东部沿海地区,是中国最重要的制造业基地之一以及农业大省。山东是中国重要的经济、文化和教育中心之一,也是中国人口最多的省份之一。而在教育方面,山东省自然有着非常出色的成绩。
在高考方面,山东省位列中国高考竞争最激烈的省份之一,与上海、北京等省市高考竞争非常激烈。高考成绩直接决定着某个学生是否能够顺利升入大学。
山东省的高考科目包括语文、数学、外语以及文理综合。其中,语文和数学是必考科目,而外语和文理综合则是选择性考试科目。
高考分数是考生参加全国高校招生录取的唯一依据。在山东省高考中,考试分为两个阶段。第一阶段是全省卷,第二阶段是全国卷。山东省的高考有着非常严格的考试制度和评分标准,考生必须准备充分并全力以赴,才能有更高的成功几率。
总的来说,山东省的高考竞争激烈,所以考生应该在平时的学习中多加努力,在考前做好充分的准备,才能顺利进入心仪的大学。
针对性复习是指考生应该根据自己的薄弱科目进行有针对性的复习。在这个阶段,考生应该将更多的时间和精力放在薄弱科目的学习上,多做练习题,弥补自己的不足。
真题和模拟题可以帮助考生对于考试形式、难度、出题思路等方面有更深刻的了解和掌握。考生应该多做真题、模拟题,加强对于整个考试过程的把握。