您现在的位置是: 首页 > 教育趋势 教育趋势

2014年湖南高考文科分数段,2014高考湖南文科数学

tamoadmin 2024-07-28 人已围观

简介1.2013年湖南高考600分以上人数2.高考改革省份有哪些3.湖南高考数学知识点总结4.高考数学 文科 数列5.新高考数学还分文理科吗6.数学数列,高考文科题不难。根据查询河南省教育局信息显示,2014河南高考文科数学整套试题的起点较低,选择题、填空题无障碍,学生容易上手,整套试题难度呈递进式推进,体现了较强的人文关怀,符合新课标精神,所以不难。2013年湖南高考600分以上人数1.设椭圆方程为

1.2013年湖南高考600分以上人数

2.高考改革省份有哪些

3.湖南高考数学知识点总结

4.高考数学 文科 数列

5.新高考数学还分文理科吗

6.数学数列,高考文科题

2014年湖南高考文科分数段,2014高考湖南文科数学

不难。根据查询河南省教育局信息显示,2014河南高考文科数学整套试题的起点较低,选择题、填空题无障碍,学生容易上手,整套试题难度呈递进式推进,体现了较强的人文关怀,符合新课标精神,所以不难。

2013年湖南高考600分以上人数

1.设椭圆方程为:x^/a^ + y^/b^ =1

根据一个焦点是F(2,0),可得:a^-b^=2^=4 ①

则椭圆的两条准线为:x=±a^/2

∴两准线距离为2*(a^/2)=λ

<=>a^=λ

<=>b^=a^-4=λ-4

∴椭圆方程为:x^/λ + y^/(λ-4)=1

2.设F关于l的对称点为B(x1,y1)

根据对称的含义可知:线段FB被直线l垂直平分

设FB与l相交于P,则P必为FB中点,且l⊥FB

设直线l的斜率为k,则有:kFB=-1/kl=-1/k ②

而FB必过F(2,0)

根据点斜式,kFB=-1/k,F(2,0),可得FB的方程为:

FB:y=(-1/k)*(x-2)

而直线l过A(1,0),根据点斜式可得其方程为:

l:y=k(x-1)

联立FB与l的方程,可得两者交点坐标P为:

P((k^+2)/(k^+1),k/(k^+1))

前方已证P为FB中点,则根据中点坐标公式可得出B(x1,y1):

x1=2*xP-xF

y1=2*yP-yF

将P,F点的坐标代入,可得:

x1=2/(k^+1)

y1=2k/(k^+1)

即B(2/(k^+1),2k/(k^+1))

而B点根据题意知在椭圆上,将其带入第一问求出的椭圆方程,并作整理,可得到关于k^的一元二次方程(含λ):

(λ^-4λ)*(k^)^ + (2λ^-12λ)*k^ + (λ-4)^=0

方程必须存在实根,故有:

△=(2λ^-12λ)^-4*(λ^-4λ)*(λ-4)^≥0

<=>λ≤16/3

而方程是关于k^的方程,k^≥0,∴方程的两个实根必然非负,则有:

两根和:-(2λ^-12λ)/(λ^-4λ)≥0

两根积:(λ-4)^/(λ^-4λ)≥0

结合条件λ>4,可得:4<λ≤6

结合③式,可得到λ的取值范围是:

λ∈(4,16/3]

高考改革省份有哪些

2013年湖南高考600分以上人数是3102人。

如下:

2013年全省共有考生37.3万人,比去年增加了1万人,增加2.75%,其中,文科类考生16万人,占42.9%,理科类考生18.9万人,占50.7%,职高类考生2.4万人,占6.4%;应届生32万人,占85.8%,往届生5.3万人,占14.2%。

由于全省已通过高职单招、保送、体育单招等形式提前录取1.9万人(无需参加考试),因此,应参考人数为35.4万人,实际参考人数35.2万人,参考率99.4%。

2013年全国共有1508所普通高等学校在湖南招收新生27.9万人,其中文科类(含艺术、体育)11.6万人,占41.6%,理科类(含艺术、体育)14.8万人,占53%,职高类1.5万人,占5.4%;本科13.7万人,占49.1%,专科14.2万人,占50.9%.

中央部委高校2万人,占7.2%,外省属高校4.4万人,占15.8%,省属高校21.5万人,占77%。按照目前公布的招生,今年在湘招生总数与去年基本持平。考虑到录取过程中高校还有追加和增投量,预计今年录取率相比去年不会有大的波动。

与去年相比,今年语文和文科数学的平均分数略有增加,其他科目的平均分均有不同程度下降,特别是文、理综合科平均分有较大幅度下降。

湖南自主命题的科目平均分数为:语文93.62分(去年92.62分),外语79.11分(去年84.42分),文科数学69.57分(去年68.52分),理科数学75.87分(去年78.51分);教育部统一命题的科目平均分为:文科综合161.53分(去年177.75分),理科综合136.83分(去年153.10分)。

2013年,全省高考文化成绩600分以上的考生共3102人(去年为5055人),其中文科类为1368人(去年1835人),理科类为1734人(去年3220人)。

湖南高考数学知识点总结

高考改革省份如下:

一、第一批新高考省份(2个)

第一批新高考改革省份有浙江、上海等2省市,2014年启动,2017年首届新高考,高考用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。

二、第二批新高考省份(4个)

第二批新高考改革省份有北京、天津、山东、海南等4省市,2017年启动,2020年首届新高考,高考用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。

附:3+3高考模式各科目分数及总分

第一个3:语文、数学、外语3门必考科目,每门满分150分,用原始考分,总分450分;

第二个3:另外3门选考科目通常满分为100分,用等级赋分,总分300分,所以总共满分为750分(上海选考科目单科满分70分,高考总满分为660分)

三、第三批新高考省份(8个)

第三批新高考改革省份有河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市,2018年启动,2021年首届新高考,取3+1+2高考模式,不分文理科。

本次第三批改革8省市与此前第一批、第二批改革的省份主要差异是必须从物理和历史中2选1,因为物理是高校自然科学类专业的基础性学科,历史是人文社会科学类专业的基础性学科,如果不选物理,大学理科专业将很难学进去甚至无从下手;如果不选历史,大学文科专业同样如此。

四、第四批新高考省份(7个)

第四批新高考改革省份有黑龙江、甘肃、吉林、安徽、江西、贵州、广西等7省份,2021年启动,2024年首届新高考,取3+1+2高考模式,不分文理科。

五、第五批新高考省份(8个)

第五批新高考改革省份有山西、河南、陕西、内蒙古、四川、云南、宁夏、青海等8省份,2022年启动,2025年首届新高考,取3+1+2高考模式,不分文理科。

高考改革的意义

1、突破传统育人模式

新高考改革政策的全面落实,目的就是培养个性化能力水平强的人才,改革之路确实需要更漫长的调整,突破各种局限迎接各种挑战,才会让改革的政策更为合理,突破了传统的育人模式,让每个学生的学习欲望得到全面激发,自然就会给社会增添更多的人才,让高考发掘更多的综合人才。

2、给学生更多自主权

通过新高考改革,让考试变得更加公正公开,而且更有利于培养个性化人才,还能更深入挖掘综合水平更强的学生,这个对学生来说就会有更多的自主权,在高考方面就能避免一考定终身的局限,让每个学生面对高考都会有更多样化的发展方向,在选择高效的过程中也会有更多的条件,给社会挖掘更多的潜在人才。

以上内容参考:百度百科-高考改革方案

高考数学 文科 数列

考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!

高考文科数学考点总结

第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。

第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联络比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含引数。

 湖南高考文科数学考点一:直线方程

1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

注:①当或时,直线垂直于轴,它的斜率不存在.

②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.

3. ⑴两条直线平行:

∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且

推论:如果两条直线的倾斜角为则∥.

⑵两条直线垂直:

两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件

4. 直线的交角:

⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

5. 过两直线的交点的直线系方程为引数,不包括在内

湖南高考文科数学考点二:轨迹方程

一、求动点的轨迹方程的基本步骤

⒈建立适当的座标系,设出动点M的座标;

⒉写出点M的 *** ;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。

⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

湖南高考文科数学考点三:导数

一、函式的单调性

在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.

f′x≥0?fx在a,b上为增函式.

f′x≤0?fx在a,b上为减函式.

二、函式的极值

1、函式的极小值:

函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.

2、函式的极大值:

函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三、函式的最值

1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.

2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.

四、求可导函式单调区间的一般步骤和方法

1、确定函式fx的定义域;

2、求f′x,令f′x=0,求出它在定义域内的一切实数根;

3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;

4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.

湖南高考文科数学考点四:不等式

1理解不等式的性质及其证明。

导读

不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:

加强化归意识,把比较大小问题转化为实数的运算;

通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;

强化函式的性质在大小比较中的重要作用,加强知识间的联络;

不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;

对于含参问题的大小比较要注意分类讨论。

2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

导读

1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。

2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。

3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。

3掌握分析法、综合法、比较法证明的简单不等式。

导读

1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。

2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。

3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。

湖南高考文科数学考点五:几何

1棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

4圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

7球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:

新高考数学还分文理科吗

(1)依题意得:a(n+1)=2Sn+1,那么an=2S(n-1)+1

两式相减得:a(n+1)-an=2[Sn-S(n-1)]=2an,那么a(n+1)=3an

要使数列{an}成等比数列,那么此数列的公比只能为3

当n=1时,a2=2S1+1=2a1+1=2t+1,而a1=t

所以a2=3a1=3t=2t+1,所以t=1

(2)a1=t=1,所以数列{an}是以1为等比数列、3为公比的等比数列

那么a(n+1)=1*3^n=3^n

所以bn=log3[a(n+1)]=n

那么1/[bn*b(n+1)]=1/[n(n+1)]=1/n-1/(n+1)

所以Tn=1-1/2+1/2-1/3+…+1/n-1/(n+1)

=1-1/(n+1)

=n/(n+1)

所以T2011=2011/2012

数学数列,高考文科题

新高考数学不分文理科。

312新高考数学不分文理科,是相同的试卷,也就是说,使用同一套试卷的新高考省份,不论物理类考生还是历史类考生,数学考试的难度都是完全一致的。

第一批新高考改革省份有浙江、上海等2省市,2014年启动,2017年首届新高考,高考用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。

第二批新高考改革省份有北京、天津、山东、海南等4省市,2017年启动,2020年首届新高考,高考用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。

第三批新高考改革省份有河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市,2018年启动,2021年首届新高考,取3+1+2高考模式,不分文理科。

第四批新高考改革省份有黑龙江、甘肃、吉林、安徽、江西、贵州、广西等7省份,2021年启动,2024年首届新高考,取3+1+2高考模式,不分文理科。

第五批新高考改革省份有山西、河南、陕西、内蒙古、四川、云南、宁夏、青海等8省份,2022年启动,2025年首届新高考,取3+1+2高考模式,不分文理科。

第一项:3

第二项:3+3*10

第三项:3+3*10^2

...........

第n项:3+3*10^(n-1)

那么Sn=3n+3*(首项为10,项数为n-1的等比数列之和)

文章标签: # 高考 # 直线 # 方程