您现在的位置是: 首页 > 教育趋势 教育趋势
2017湖南数学文科高考-2017湖南学考数学
tamoadmin 2024-08-24 人已围观
简介1.湖南省高考考什么卷2.新高考数学还分文理科吗3.文科数学比理科数学难度要大吗4.2017年新高考的科目及分值是多少?5.高考文科数学知识点总结归纳湖南省高考考什么卷湖南省高考考什么卷如下:湖南高考使用全国Ⅰ卷。湖南高考使用全国Ⅰ卷,即新课标一卷,考试科目有语文、数学、英语、文综、理综,文科考试科目有语文、文数、英语、文综;理科考试科目有语文、理数、英语、理综。全国卷,是教育部为未能自主命题的省
1.湖南省高考考什么卷
2.新高考数学还分文理科吗
3.文科数学比理科数学难度要大吗
4.2017年新高考的科目及分值是多少?
5.高考文科数学知识点总结归纳
湖南省高考考什么卷
湖南省高考考什么卷如下:
湖南高考使用全国Ⅰ卷。
湖南高考使用全国Ⅰ卷,即新课标一卷,考试科目有语文、数学、英语、文综、理综,文科考试科目有语文、文数、英语、文综;理科考试科目有语文、理数、英语、理综。全国卷,是教育部为未能自主命题的省份命题的高考试卷。随着高考改革政策的不断调整与变化,全国各省市高考使用全国卷的省市越来越多。
高考全国卷不会因考题差别导致教材差别,一切都是遵照高考大纲命题的。高考后,试卷不能拿走,高考试卷密封后会送到指定的阅卷场所,阅卷后的高考试卷属于高考档案的一种,要存档保留一定年限,考生是无法再次接触到自己的高考试卷的。
考生高考文化总成绩由统考科目成绩和选考科目成绩组成,满分750分。其中,3门统考科目每科满分 150 分,直接以卷面原始分数计入高考总成绩;考生选择的3门选考科目每科满分100 分,首选科目直接以卷面原始分数计入高考总成绩,再选科目依据《关于做好普通高中学业水平选择性考试成绩计入高考录取总成绩工作的通知》规定,以转换后的分数计入高考总成绩。
高考简介:
高考是中华人民共和国(不包括香港特别行政区、澳门特别行政区和台湾省)普通高等学校的招生考试,是由普通高中毕业生和具有同等学力的考生参加的选拔性考试。普通高考于每年的6月7、8日举行,部分地区因其科目安排而考试延长至6月9日。
普通高等学校招生全国统一考试由国家主管部门授权的单位或实行自主命题的省级教育考试院命制;由教育部统一调度,各省级招生考试委员会负责执行和管理。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。?
2023年全国统考于6月7日开始举行,具体科目考试时间安排为:6月7日9:00至11:30语文;15:00至17:00数学。6月8日9:00至11:30文科综合/理科综合;15:00至17:00外语,有外语听力测试内容的应安排在外语笔试考试开始前进行。
新高考数学还分文理科吗
新高考数学不分文理科。
312新高考数学不分文理科,是相同的试卷,也就是说,使用同一套试卷的新高考省份,不论物理类考生还是历史类考生,数学考试的难度都是完全一致的。
第一批新高考改革省份有浙江、上海等2省市,2014年启动,2017年首届新高考,高考用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。
第二批新高考改革省份有北京、天津、山东、海南等4省市,2017年启动,2020年首届新高考,高考用3+3模式,不分文理科,其中第一个3为语文、数学、外语,第二个3为3门选考科目。
第三批新高考改革省份有河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市,2018年启动,2021年首届新高考,取3+1+2高考模式,不分文理科。
第四批新高考改革省份有黑龙江、甘肃、吉林、安徽、江西、贵州、广西等7省份,2021年启动,2024年首届新高考,取3+1+2高考模式,不分文理科。
第五批新高考改革省份有山西、河南、陕西、内蒙古、四川、云南、宁夏、青海等8省份,2022年启动,2025年首届新高考,取3+1+2高考模式,不分文理科。
文科数学比理科数学难度要大吗
文理科高考数学卷并不一样,理科数学难度远大于文科数学。如果报文科,数理化并不是就可以放弃了,因为还要参与学业水平考试。
现行高考方案为“3+X”
“3”指“语文、数学、外语”,“X”指由指学生根据自己的意愿,自主从文科综合(政治、历史、地理)和理科综合(物理、化学、生物)2个综合科中选择一个考试科目。此方案是目前全国应用最广,最成熟的高考方案。总分750分(语文150分,数学150分,外语150分,文科综合/理科综合300分)。
高中学业水平考试,通称“高中会考”。是为了进一步加快普通高中教育质量监测体系建设,推动普通高中课程改革工作的有效实施和教育教学质量的全面提升,结合各省普通高中教育发展实际,在认真调研论证、广泛征求各方意见的基础上组织相应的考试。
扩展资料:
高考改革:
2014年上半年,教育部将发布总体方案及高考改革等各领域改革实施意见,有条件的省份开始综合改革试点或专项改革试点,2017年,总结成效和经验,推广实施,到2020年,基本形成新的考试招生制度。方案要求,各省(区、市)最迟要在2014年年底前出台本地区具体实施办法。
2014年9月院印发了《关于深化考试招生制度改革的实施意见》,《意见》规定,2014年在上海市和浙江省启动了高考综合改革的试点,2017年将全面推进。
政策规定,在实行高考综合改革的省(区、市),计入高校招生录取总成绩的学业水平考试3个科目,由学生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物等科目中自主选择。学生可以在完成必修内容的学习,在对自己的兴趣和优势有一定了解后确定选考科目。
也就是说,将来学生的高考成绩将会是“3+3”模式,除了统一高考的语数外三科外,还要加上自己选择的三科学业水平测试的成绩。从这样的设计看,学生可以根据自己的特长和兴趣进行竞争,“可以文理兼修、文理兼考,使得文理不分科成为了可能。”教育部基础二司司长郑富芝说。
百度百科-普通高等学校招生全国统一考试
百度百科-高中学业水平考试
百度百科-高考改革
2017年新高考的科目及分值是多少?
高考各科的分值为:
文科:语文150分,数学150分,外语150分,文科(政治100分,历史100分,地理100分)综合300分,共计750分。
理科:语文150分,数学150分,外语150分,理科(物理110分,化学100分,生物90分) 综合300分,共计750分。
此外,上海地区高考总分为660分,各科分值为:语文150分、数学150分、外语150分,不分文理科,此外考生自主选择的3门选考科目,每门满分均为70分。
江苏省高考总分值为480,各科分值为:语文160分,数学160分,外语120分,共440分。文科类的语文、理科类的数学分别另设附加题40分。需注意在江苏新的高考模式中,总分值设置为750分。考试取“3+1+2”模式。其中“3”是指统一高考的语文、数学、外语3个科目;“1”是指考生在物理、历史两门选择性考试科目中所选择的1个科目,“2”是指考生在思想政治、地理、化学、生物4门选择性考试科目中所选择的2个科目。语文、数学、外语3门统考科目,每门150分,其中外语科目含听力考试30分。3门选择性考试科目每门100分。其中,物理、历史以原始分计入总分;其余科目(思想政治、地理、化学、生物)以等级分计入总分。
部分地区总分为660分,各科分值设定为:语文150分、数学150分、外语150分,不分文理科,其中外语有两次考试机会,最终选择其中较好的一次成绩计入高考总分。此外考生自主选择的3门选考科目,每门满分均为70分。
有些地区(如内蒙古、新疆、辽宁、山西等)听力部分的成绩不计入总分,作为单列的一项成绩在投档时提供给高校参考;非听力部分120分换算为150分,换算办法:按考生非听力部分的卷面成绩乘以1.25,换算为外语科目成绩。有些地区(如辽宁、广东、河北、湖北、湖南、江苏、福建、重庆等)听力一年考两次,是需要计入高考总分的,并且可以取较高一次成绩计入总分,其他英语笔试题目满分120分。
全国统考科目中的外语分为英语、俄语、日语、法语、德语、西班牙语等6个语种,由考生任选其中一个语种作为考试科目(如:安徽、北京、福建、甘肃、广东、广西、贵州、河北、河南、黑龙江、湖北、湖南、吉林、江西、辽宁、内蒙、宁夏、青海、山东、山西、陕西、四川、天津、西藏、新疆、云南、重庆等27个省市高考满分为750分)。
传统高考模式
传统高考模式就是以前那种取文理分科的方式进行高考,语数外三科,每科150分,文科的政史地三科每科一百分,理科的物理110分,化学100分,生物90分,使用的试卷是全国卷,按照地区划分,一共三卷。
传统高考模式一直被认为对学生的发展有所限制,一直被教育专家和学生及家长诟病,所以不是很适合当下的适合发展。
新高考模式
新高考模式是我国实行的一种全新的高考模式,目的就是改变传统高考对学生发展的限制,让学生拥有更多的可能。
新高考模式用3+1+2的形式展开。
以湖北省为例,3是指语数外三个必选科目,每科的分数为150分,1是指选考科目,从历史和物理两科中选一科参考,分值为100分。2是选考科目,从地理、政治、化学、生物四科中选择两科参加考试,每科的分数为100分,总分就是必考三科的450分加上物理或历史选考的100分再加四科选两科的200分,一共750分。
新高考模式已经在多个省份开始试点,完善后就将全国推行,取代传统高考模式。
部分地区根据地方政策,总分有所不同。
以海南和江苏为例,海南省也用了新高考模式,但是除了必选的三科的450分和选考科目的300分之后,该省的总分计算还计入了考生会考分数的百分之十,满分为150分,所以海南省的高考总分达到了900分。上海满分660分。
高考文科数学知识点总结归纳
对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。
高考文科数学知识点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
文科数学高频必考考点
第一部分:选择与填空
1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);
2.常用逻辑用语(充要条件,全称量词与存在量词的判定);
3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);
4.幂、指、对函数式运算及图像和性质
5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);
6.空间体的三视图及其还原图的表面积和体积;
7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;
8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;
9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);
10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;
11.三角恒等变形(切化弦、升降幂、角公式);三角求值、三角函数图像与性质;
12.向量数量积、坐标运算、向量的几何意义的应用;
13.正余弦定理应用及解三角形;
14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;
15.线性规划的应用;会求目标函数;
16.圆锥曲线的性质应用(特别是会求离心率);
17.导数的几何意义及运算、定积分简单求法
18.复数的概念、四则运算及几何意义;
19.抽象函数的识别与应用;
第二部分:解答题
第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;
第18题:(文)概率与统计(概率与统计相结合型)
(理)离散型随机变量的概率分布列及其数字特征;
第19题:立体几何
①证线面平行垂直;面与面平行垂直
②求空间中角(理科特别是二面角的求法)
③求距离(理科:动态性)空间体体积;
第20题:解析几何(注重思维能力与技巧,减少计算量)
①求曲线轨迹方程(用定义或待定系数法)
②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)
③求定点、定值、最值,求参数取值的问题;
第21题:函数与导数的综合应用
这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。
主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想
一般设计三问:
①求待定系数,利用求导讨论确定函数的单调性;
②求参变数取值或函数的最值;
③探究性问题或证不等式恒成立问题。
第22题:三选一:
(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;
(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。
(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。
2018高考文科数学知识点:高中数学知识点 总结
必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
高考文科数学知识点总结
乘法与因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a
根与系数的关系
X1+X2=-b/aX1__X2=c/a注:韦达定理
判别式
b2-4a=0注:方程有相等的两实根
b2-4ac>0注:方程有一个实根
b2-4ac<0注:方程有共轭复数根
三角函数公式
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))
ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积公式
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB
-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和公式
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4
1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圆半径
余弦定理:b2=a2+c2-2accosB
注:角B是边a和边c的夹角
高考文科数学知识点总结相关 文章 :
★ 2022北京卷高考文科数学试题及答案解析
★ 2022全国新高考Ⅰ卷文科数学试题及答案解析
★ 2022年全国新高考1卷数学试题及答案解析
★ 2022全国新高考Ⅱ卷文科数学试题及答案解析
★ 高中导数知识点总结大全
★ 山东2022高考文科数学试题及答案解析
★ 湖北2022高考文科数学试题及答案解析
★ 2022河北高考文科数学试题及答案解析
★ 高中文科数学复习指导与注意事项
★ 2017高考数学三角函数知识点总结
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "s://hm.baidu/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();