您现在的位置是: 首页 > 教育政策 教育政策
高考二卷 数学,高考二卷理科数学答案解析
tamoadmin 2024-06-06 人已围观
简介1.2022年江西高考数学答案解析及试卷汇总(含文、理科,已更新)2.2009年山东高考理科数学问答试题及答案3.2014高考新课标全国二卷理科数学第24题详细过程4.求解2010年高考全国2卷理科数学题5.2022年北京高考数学试题及参考答案6.2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)7.2022年四川高考数学答案解析及试卷汇总(含文理科)8.高三数学试卷分析 2022年全
1.2022年江西高考数学答案解析及试卷汇总(含文、理科,已更新)
2.2009年山东高考理科数学问答试题及答案
3.2014高考新课标全国二卷理科数学第24题详细过程
4.求解2010年高考全国2卷理科数学题
5.2022年北京高考数学试题及参考答案
6.2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)
7.2022年四川高考数学答案解析及试卷汇总(含文理科)
8.高三数学试卷分析
2022年全国高考将在6月7日开考,相信大家都非常想要知道山西高考文科数学和理科数学科目的答案及解析,我就为大家带来2022年山西高考数学答案解析及试卷汇总。
2022年山西高考答案及试卷汇总
点击即可查看
大家可以在本文前后输入高考分数查看能上的大学,了解更多院校详细信息。
一、山西高考数学真题试卷
文科数学
理科数学
二、山西高考数学真题答案解析
文科数学
理科数学
2022年江西高考数学答案解析及试卷汇总(含文、理科,已更新)
今天小编辑给各位分享高考数学试卷2022的知识,其中也会对对口高考数学试卷2022分析解答,如果能解决你想了解的问题,关注本站哦。
2022年全国乙卷高考数学试题答案
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。
2022年全国乙卷高考数学试题答案
全面认识你自己
认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。
首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。
其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。
最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。
高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。
与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。
此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。
在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。
考生个人特征情况
考生个人特征如兴趣、特长、志向、能力、职业价值观等。
兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。
特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。
志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。
能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。
职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。
2022年全国乙卷高考数学试题答案相关文章:
★2022高考全国乙卷试题及答案
★2022高考理科数学乙卷试题解析
★2022年全国乙卷高考理科数学
★2022年全国乙卷文科数学卷真题公布
★2022年高考数学试题及答案
★2022年全国乙卷高考数学真题及答案
★2022年全国理科数学卷试题答案及解析
★2022全国Ⅰ卷高考数学试题及参考答案一览
★2022年英语全国乙卷试题及答案
★2022年高考乙卷数学真题试卷
2022新高考全国卷的数学题是什么难度?有多少基础分?
随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。
一、2022年新高考全国卷的数学题处于中上等难度
根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分
一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结
总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。
2022年高考数学试题有哪些新变化?
2022年高考数学落实立德树人根本任务,促进学生德智体美劳全面发展,体现高考改革的要求。试卷突出数学学科特点,强化基础考查,突出关键能力,加强教考衔接,服务“双减”政策实施,助力基础教育提质增效。
变化一、设置现实情境,发挥育人作用
高考数学命题坚持思想性与科学性的统一,发挥数学应用广泛、联系实际的学科特点,设置真实情境,命制具有教育意义的试题,发挥数学考试的教育功能和引导作用。
变化二、设置优秀传统文化情境
数学试卷以中华优秀传统文化为试题情境材料,让学生领略中华民族的智慧和数学研究成果,进一步树立民族自信心和自豪感,培育爱国主义情感。如新高考Ⅱ卷第3题以中国古代建筑中的举架结构为背景,考查学生综合应用等差数列、解析几何、三角函数等基础知识解决实际问题的能力。全国甲卷理科第8题取材于我国古代科学家沈括的杰作《梦溪笔谈》,以沈括研究的圆弧长计算方法“会圆术”为背景,让学生直观感受我国古代科学家探究问题和解决问题的过程,引发学生的学习兴趣。
变化三、设置社会经济发展情境
数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。如新高考Ⅰ卷第4题以我国的重大建设成就“南水北调”工程为背景,考查学生的空间想象、运算求解能力,试题引导学生关注社会主义建设的成果,增强社会责任感。全国甲卷文、理科第2题以社区环境建设中的“垃圾分类”为背景考查学生的数据分析能力。全国乙卷文、理科第19题以生态环境建设为背景材料,考查学生应用统计的基本知识和基础方法解决实际问题的能力,对数据处理与数学运算素养也作了相应的考查。
高考数学试卷2022难吗
难。
全国卷,和新高考卷的高考学子,都觉得2022年高考数学试卷还是挺难的。不过难的话,其他人也不会太容易,换个心态,大家都很难,心理就会平衡一些了。
全国卷和新高考卷的高考学子们,考过了就把心态调整好,积极的面对接下来的考试,才是最正确的做法。心态好,可能运气就会好,接下来的考试就可能会发挥的更好。
考生四:王少波,重庆考生
咳,难啊,一点都不简单。我还听被人数,新高考卷的数学题目简单一些,这真是在胡扯八道。这张试卷,从选择题道填空题,再到大题,都比平时的难很多。考完数学之后,我们班好多考生都觉得难,包括我们的数学老师,都说这试卷,出的有点难为人了。今年新高考卷的考生,也太难了,我都听说全国卷的简单一些。
你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?
今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。
2022新高考全国一卷数学试卷及答案解析
为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!
2022新高考全国一卷数学试卷
2022新高考全国一卷数学试卷答案解析参考
高考怎样填志愿
1、选择哪个学校
填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。
2、选择什么专业
选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。
3、提前了解各个学校的情况
在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。
服从调剂意味着什么
1、增加了一次录取机会
在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。
如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。
2、服从调剂,不一定会被调剂到其他专业
从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。
如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。
3、专业调剂会调到哪里去?
专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。
高考之后可以去哪玩
1、云南
云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。
云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。
2、杭州
“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼
3、重庆
说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。
4、厦门
厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜
5、西藏
西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。
6、九寨沟
九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。
7、桂林
“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。
2022新高考全国一卷数学试卷及答案解析相关文章:
★2022高考北京卷数学真题及答案解析
★2022高考全国乙卷试题及答案
★2022全国甲卷高考数学文科试卷及答案解析
★2022高考甲卷数学真题试卷及答案
★2022年北京高考数学试卷
★2022高考全国甲卷数学试题及答案
★2022全国新高考I卷语文试题及答案
★2022全国新高考Ⅰ卷英语试题及答案解析
★2022年全国新高考II卷数学真题及答案
★2022北京卷高考文科数学试题及答案解析
2009年山东高考理科数学问答试题及答案
2022年全国高考将在6月7日开考,相信大家都非常想要知道江西高考文科数学和理科数学科目的答案及解析,我就为大家带来2022年江西高考数学答案解析及试卷汇总。
2022年江西高考答案及试卷汇总
点击即可查看
大家可以在本文前后输入高考分数查看能上的大学,了解更多院校详细信息。
一、江西高考数学真题试卷
文科数学
理科数学
二、江西高考数学真题答案解析
文科数学
理科数学
2014高考新课标全国二卷理科数学第24题详细过程
2009年普通高等学校招生全国统一考试(山东卷)
理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。考试结束后,将本试卷和答题卡一并交回.
注意事项:
1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.。
参考公式:
柱体的体积公式V=Sh,其中S是柱体的底面积,h是锥体的高。
锥体的体积公式V= ,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);R如果事件A,B独立,那么P(AB)=P(A)P(B).
事件A在一次试验中发生的概率是 ,那么 次独立重复试验中事件A恰好发生 次的概率: .
第Ⅰ卷(共60分)
一、选择题:本大题共12小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合 , ,若 ,则 的值为( )
A.0 B.1 C.2 D.4
解析:∵ , , ∴ ∴ ,故选D.
答案:D
命题立意:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.
2.复数 等于( ).
A. B. C. D.
2. 解析: ,故选C. w.w.w.k.s.5.u.c.o.m
答案:C
命题立意:本题考查复数的除法运算,分子、分母需要同乘以分母的共轭复数,把分母变为实数,将除法转变为乘法进行运算.
3.将函数 的图象向左平移 个单位, 再向上平移1个单位,所得图象的函数解析式是( ).
A. B. C. D.
3. 解析:将函数 的图象向左平移 个单位,得到函数 即 的图象,再向上平移1个单位,所得图象的函数解析式为 ,故选B.
答案:B
命题立意:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形. w.w.w.k.s.5.u.c.o.m
4. 一空间几何体的三视图如图所示,则该几何体的体积为( ).
A. B. C. D.
解析:该空间几何体为一圆柱和一四棱锥组成的,
圆柱的底面半径为1,高为2,体积为 ,四棱锥的底面
边长为 ,高为 ,所以体积为
所以该几何体的体积为 .
答案:C
命题立意:本题考查了立体几何中的空间想象能力,
由三视图能够想象得到空间的立体图,并能准确地
计算出.几何体的体积.
5. 已知α,β表示两个不同的平面,m为平面α内的
一条直线,则“ ”是“ ”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
解析:由平面与平面垂直的判定定理知如果m为平面α内的
一条直线, ,则 ,反过来则不一定.所以“ ”是“ ”的必要不充分条件. w.w.w.k.s.5.u.c.o.m
答案:B.
命题立意:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.
6. 函数 的图像大致为( ).
解析:函数有意义,需使 ,其定义域为 ,排除C,D,又因为 ,所以当 时函数为减函数,故选A. w.w.w.k.s.5.u.c.o.m
答案:A.
命题立意:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质.
7.设P是△ABC所在平面内的一点, ,则( )
A. B. C. D.
解析:因为 ,所以点P为线段AC的中点,所以应该选B。
答案:B。
命题立意:本题考查了向量的加法运算和平行四边形法则,
可以借助图形解答。
8.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的w.w.w.k.s.5.u.c.o.m
产品净重(单位:克)数据绘制的频率分布直方图,其中产品
净重的范围是[96,106],样本数据分组为[96,98),[98,100),
[100,102),[102,104),[104,106],已知样本中产品净重小于
100克的个数是36,则样本中净重大于或等于98克并且
小于104克的产品的个数是( ).
A.90 B.75 C. 60 D.45
解析:产品净重小于100克的概率为(0.050+0.100)×2=0.300,
已知样本中产品净重小于100克的个数是36,设样本容量为 ,
则 ,所以 ,净重大于或等于98克并且小于
104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本
中净重大于或等于98克并且小于104克的产品的个数是
120×0.75=90.故选A.
答案:A
命题立意:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有关的数据.
9. 设双曲线 的一条渐近线与抛物线y=x +1 只有一个公共点,则双曲线的离心率为( ). w.w.w.k.s.5.u.c.o.m
A. B. 5 C. D.
解析:双曲线 的一条渐近线为 ,由方程组 ,消去y,得 有唯一解,所以△= ,
所以 , ,故选D. w.w.w.k.s.5.u.c.o.m
答案:D.
命题立意:本题考查了双曲线的渐近线的方程和离心率的概念,以及直线与抛物线的位置关系,只有一个公共点,则解方程组有唯一解.本题较好地考查了基本概念基本方法和基本技能.
10. 定义在R上的函数f(x)满足f(x)= ,则f(2009)的值为( )
A.-1 B. 0 C.1 D. 2
解析:由已知得 , , ,
, ,
, , ,
所以函数f(x)的值以6为周期重复性出现.,所以f(2009)= f(5)=1,故选C.
答案:C.
命题立意:本题考查归纳推理以及函数的周期性和对数的运算.
11.在区间[-1,1]上随机取一个数x, 的值介于0到 之间的概率为( ).
A. B. C. D. w.w.w.k.s.5.u.c.o.m
解析:在区间[-1,1]上随机取一个数x,即 时,要使 的值介于0到 之间,需使 或 ∴ 或 ,区间长度为 ,由几何概型知 的值介于0到 之间的概率为 .故选A.
答案:A
命题立意:本题考查了三角函数的值域和几何概型问题,由自变量x的取值范围,得到函数值 的范围,再由长度型几何概型求得.
12. 设x,y满足约束条件 ,w.w.w.k.s.5.u.c.o.m
若目标函数z=ax+by(a>0,b>0)的值是最大值为12,
则 的最小值为( ).
A. B. C. D. 4
解析:不等式表示的平面区域如图所示阴影部分,当直线ax+by= z(a>0,b>0)
过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6, 而 = ,故选A.
答案:A
命题立意:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求 的最小值常用乘积进而用基本不等式解答. w.w.w.k.s.5.u.c.o.m
第 卷
二、填空题:本大题共4小题,每小题4分,共16分。
13.不等式 的解集为 .
解析:原不等式等价于不等式组① 或②
或③ 不等式组①无解,由②得 ,由③得 ,综上得 ,所以原不等式的解集为 . w.w.w.k.s.5.u.c.o.m
答案:
命题立意:本题考查了含有多个绝对值号的不等式的解法,需要根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案.本题涉及到分类讨论的数学思想.
14.若函数f(x)=a -x-a(a>0且a 1)有两个零点,则实数a的取值范围是 .
解析: 设函数 且 和函数 ,则函数f(x)=a -x-a(a>0且a 1)有两个零点, 就是函数 且 与函数 有两个交点,由图象可知当 时两函数只有一个交点,不符合,当 时,因为函数 的图象过点(0,1),而直线 所过的点一定在点(0,1)的上方,所以一定有两个交点.所以实数a的取值范围是
答案: w.w.w.k.s.5.u.c.o.m
命题立意:本题考查了指数函数的图象与直线的位置关系,隐含着对指数函数的性质的考查,根据其底数的不同取值范围而分别画出函数的图象解答.
15.执行右边的程序框图,输出的T= .
解析:按照程序框图依次执行为S=5,n=2,T=2;
S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;
S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30
答案:30
命题立意:本题主要考查了循环结构的程序框图,一般都可以
反复的进行运算直到满足条件结束,本题中涉及到三个变量,
注意每个变量的运行结果和执行情况.
16.已知定义在R上的奇函数 ,满足 ,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间 上有四个不同的根 ,则 w.w.w.k.s.5.u.c.o.m
解析:因为定义在R上的奇函数,满足 ,所以 ,所以, 由 为奇函数,所以函数图象关于直线 对称且 ,由 知 ,所以函数是以8为周期的周期函数,又因为 在区间[0,2]上是增函数,所以 在区间[-2,0]上也是增函数.如图所示,那么方程f(x)=m(m>0)在区间 上有四个不同的根 ,不妨设 由对称性知 所以
答案:-8
命题立意:本题综合考查了函数的奇偶性,单调性,
对称性,周期性,以及由函数图象解答方程问题,
运用数形结合的思想和函数与方程的思想解答问题.
三、解答题:本大题共6分,共74分。
17.(本小题满分12分)设函数f(x)=cos(2x+ )+sin x.
(1) 求函数f(x)的最大值和最小正周期.
(2) 设A,B,C为 ABC的三个内角,若cosB= , ,且C为锐角,求sinA.
解: (1)f(x)=cos(2x+ )+sin x.=
所以函数f(x)的最大值为 ,最小正周期 . w.w.w.k.s.5.u.c.o.m
(2) = =- , 所以 , 因为C为锐角, 所以 ,
又因为在 ABC 中, cosB= , 所以 , 所以w.w.w.k.s.5.u.c.o.m
.
命题立意:本题主要考查三角函数中两角和差的弦函数公式、二倍角公式、三角函数的性质以及三角形中的三角关系.
(18)(本小题满分12分)
如图,在直四棱柱ABCD-A B C D 中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2, AA =2, E、E 、F分别是棱AD、AA 、AB的中点。
(1) 证明:直线EE //平面FCC ;
(2) 求二面角B-FC -C的余弦值。w.w.w.k.s.5.u.c.o.m
解法一:(1)在直四棱柱ABCD-A B C D 中,取A1B1的中点F1,
连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB//CD,
所以CD=//A1F1,A1F1CD为平行四边形,所以CF1//A1D,
又因为E、E 分别是棱AD、AA 的中点,所以EE1//A1D,
所以CF1//EE1,又因为 平面FCC , 平面FCC ,
所以直线EE //平面FCC .
(2)因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-A B C D 中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC -C的一个平面角, 在△BCF为正三角形中, ,在Rt△CC1F中, △OPF∽△CC1F,∵ ∴ , w.w.w.k.s.5.u.c.o.m
在Rt△OPF中, , ,所以二面角B-FC -C的余弦值为 .
解法二:(1)因为AB=4, BC=CD=2, F是棱AB的中点,
所以BF=BC=CF,△BCF为正三角形, 因为ABCD为
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中点M,
连接DM,则DM⊥AB,所以DM⊥CD,
以DM为x轴,DC为y轴,DD1为z轴建立空间直角坐标系,
,则D(0,0,0),A( ,-1,0),F( ,1,0),C(0,2,0),
C1(0,2,2),E( , ,0),E1( ,-1,1),所以 , , 设平面CC1F的法向量为 则 所以 取 ,则 ,所以 ,所以直线EE //平面FCC . w.w.w.k.s.5.u.c.o.m
(2) ,设平面BFC1的法向量为 ,则 所以 ,取 ,则 ,
, , w.w.w.k.s.5.u.c.o.m
所以 ,由图可知二面角B-FC -C为锐角,所以二面角B-FC -C的余弦值为 . w.w.w.k.s.5.u.c.o.m
命题立意:本题主要考查直棱柱的概念、线面位置关系的判定和二面角的计算.考查空间想象能力和推理运算能力,以及应用向量知识解答问题的能力.
(19)(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q 为0.25,在B处的命中率为q ,该同学选择先在A处投一球,以后都在B处投,用 表示该同学投篮训练结束后所得的总分,其分布列为
0 2 3 4 5
w.w.w.k.s.5.u.c.o.m p
0.03 P1 P2 P3 P4
(1) 求q 的值;w.w.w.k.s.5.u.c.o.m
(2) 求随机变量 的数学期望E ;
(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25, , P(B)= q , .
根据分布列知: =0时 =0.03,所以 ,q =0.8.
(2)当 =2时, P1= w.w.w.k.s.5.u.c.o.m
=0.75 q ( )×2=1.5 q ( )=0.24
当 =3时, P2 = =0.01,
当 =4时, P3= =0.48,
当 =5时, P4=
=0.24
所以随机变量 的分布列为
0 2 3 4 5
p 0.03 0.24 0.01 0.48 0.24
随机变量 的数学期望
(3)该同学选择都在B处投篮得分超过3分的概率为
;
该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.
由此看来该同学选择都在B处投篮得分超过3分的概率大.
命题立意:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.
(20)(本小题满分12分)
等比数列{ }的前n项和为 , 已知对任意的 ,点 ,均在函数 且 均为常数)的图像上.
(1)求r的值;
(11)当b=2时,记
证明:对任意的 ,不等式 成立
解:因为对任意的 ,点 ,均在函数 且 均为常数的图像上.所以得 ,当 时, ,当 时, ,又因为{ }为等比数列,所以 ,公比为 ,
(2)当b=2时, ,
则 ,所以
下面用数学归纳法证明不等式 成立.
① 当 时,左边= ,右边= ,因为 ,所以不等式成立.
② 假设当 时不等式成立,即 成立.则当 时,左边=
所以当 时,不等式也成立.
由①、②可得不等式恒成立.
命题立意:本题主要考查了等比数列的定义,通项公式,以及已知 求 的基本题型,并运用数学归纳法证明与自然数有关的命题,以及放缩法证明不等式.
(21)(本小题满分12分)
两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧 上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在 的中点时,对城A和城B的总影响度为0.065.
(1)将y表示成x的函数;
(11)讨论(1)中函数的单调性,并判断弧 上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
解法一:(1)如图,由题意知AC⊥BC, ,
其中当 时,y=0.065,所以k=9
所以y表示成x的函数为
(2) , ,令 得 ,所以 ,即 ,当 时, ,即 所以函数为单调减函数,当 时, ,即 所以函数为单调增函数.所以当 时, 即当C点到城A的距离为 时, 函数 有最小值.
解法二: (1)同上.
(2)设 ,
则 , ,所以
当且仅当 即 时取”=”.
下面证明函数 在(0,160)上为减函数, 在(160,400)上为增函数.
设0<m1<m2<160,则
,
因为0<m1<m2<160,所以4 >4×240×240
9 m1m2<9×160×160所以 ,
所以 即 函数 在(0,160)上为减函数.
同理,函数 在(160,400)上为增函数,设160<m1<m2<400,则
因为1600<m1<m2<400,所以4 <4×240×240, 9 m1m2>9×160×160
所以 ,
所以 即 函数 在(160,400)上为增函数.
所以当m=160即 时取”=”,函数y有最小值,
所以弧 上存在一点,当 时使建在此处的垃圾处理厂对城A和城B的总影响度最小.
命题立意:本题主要考查了函数在实际问题中的应用,运用待定系数法求解函数解析式的 能力和运用换元法和基本不等式研究函数的单调性等问题.
(22)(本小题满分14分)
设椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。
解:(1)因为椭圆E: (a,b>0)过M(2, ) ,N( ,1)两点,
所以 解得 所以 椭圆E的方程为
(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 ,设该圆的切线方程为 解方程组 得 ,即 ,
则△= ,即
, 要使 ,需使 ,即 ,所以 ,所以 又 ,所以 ,所以 ,即 或 ,因为直线 为圆心在原点的圆的一条切线,所以圆的半径为 , , ,所求的圆为 ,此时圆的切线 都满足 或 ,而当切线的斜率不存在时切线为 与椭圆 的两个交点为 或 满足 ,综上, 存在圆心在原点的圆 ,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且 .
因为 ,
所以 ,
,
①当 时
因为 所以 ,
所以 ,
所以 当且仅当 时取”=”.
② 当 时, .
③ 当AB的斜率不存在时, 两个交点为 或 ,所以此时 ,
综上, |AB |的取值范围为 即:
命题立意:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.
求解2010年高考全国2卷理科数学题
解答:
分析:
此题是选修4-5:不等式选讲的题目,考察了绝对值不等式的应用,分类讨论思想。
第一小问,直接运用绝对值不等式即可
第二小问,令x=3后,可以看作解一个关于a的绝对值不等式
解此类绝对值不等式,关键在于讨论a的范围从而去绝对值
由于a>0,3+1/a=0的零点是-1,3-a的零点是3
所以只需以3为界去绝对值,解去绝对值后的不等式,最后对所以的情况取并集即可。
2022年北京高考数学试题及参考答案
通过离心率可得出a^2=4b^2,c^=3b^2
设出A(x1,y1) B(x2,y2)利用向量关系得到x1,x2之间的关系
通过题意设出直线方程与椭圆方程联立解出x1=,x2=
再代入上面得到的x1,x2之间的关系式就可得到一个关于k的方程
解方程可得K等于根下2
选B
虽然计算量很大但不失为处理这类不能用韦达定理的题目的好方法
希望对你有所帮助
2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)
相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!
2022年北京高考数学试题
2022年北京高考数学试题参考答案
高考数学答题策略
考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和 方法 、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。
2022年北京高考数学试题及参考答案相关 文章 :
★ 2022数学高考题及答案(新高考2卷)
★ 2022新高考数学Ⅰ卷试卷及参考答案
★ 2022年全国Ⅰ卷高考数学试题及参考答案公布
★ 2022全国一卷高考数学试题及答案
★ 2022新高考全国一卷数学试卷及答案解析
★ 2022年高考数学试题及答案(新高考二卷)
★ 2022全国新高考Ⅰ卷数学卷完整试题及答案一览
★ 2022新高考全国一卷数学试卷答案解析
★ 2022年高考数学全国乙卷(理科)试题答案(预测)
★ 2022新高考数学试题及答案详解
2022年四川高考数学答案解析及试卷汇总(含文理科)
想必很多同学高考结束后的第一件事情就是预估自己的分数,而要预估分数就需要答案,我就在本文为大家带来2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)。
一、2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)
2021年高考即将开始,关于2021年高考全国一卷、二卷、三卷数学试题及答案,高考100网将在试题及答案正式公布以后,第一时间进行更新,请大家持续关注高考100网。?
二、志愿填报参考文章
2021年河北450分理科能上什么大学?附河北450分的公办二本名单
女生学医,学什么专业比较好:医学方面女生学什么专业最好?(2021年参考)
学大数据专业后悔死了?大数据专业有哪些学校?
三、2020年全国一卷数学试卷及答案解析
文科
文科参考答案
理科
理科参考答案
四、2020年全国二卷数学试卷及答案解析
文科
文科参考答案
理科
理科参考答案
五、2020年全国三卷数学试卷及答案解析
文科
文科参考答案
理科
理科参考答案
高三数学试卷分析
2022年全国高考将在6月7日开考,相信大家都非常想要知道四川高考文科数学和理科数学科目的答案及解析,我就为大家带来2022年四川高考数学答案解析及试卷汇总。
2022年四川高考答案及试卷汇总
点击即可查看
大家可以在本文 前 后输入高考分数查看能上的大学,了解更多院校详细信息。
一、四川高考数学真题试卷
文科数学
理科数学
二、四川高考数学真题 答案 解析
文科数学
理科数学
高三数学试卷分析1
一、试卷特点分析
1.覆盖知识面广,重点考查主干
除了概率与统计以外,试题全面覆盖教材中知识模块,知识条目的覆盖率在50%左右。除主干知识重点考查外,已广泛涉及复数、集合、三视图,程序框图、逻辑与推理、排列组合、线性规划、平面向量等。还注重了数学的现实情境和历史文化,如理科第7、9、14、18题,文科第5、19题。
试卷穾出学科的主干内容:函数与导数、三角、数列、立体几何、解析几何以及不等式在试卷中占有较高的比例,整体结构合理,达到必要的考查深度。
试卷还注意知识交汇的考查,如理科第5、14题 ,文科第7、11、19题。
2.注重思想方法,突显能力素养
七个基本数学思想在试卷中都有涉及。解题方法有坐标法、三角法、向量法、待定系数法、代入法、消元法、配方法、换元法等。
六大数学核心素养:运算求解能力在绝大多数题目中都有体现,逻辑推理也有鲜明体现,直观想象体现在用数形结合的题目中,数学建模与数据分析是对现实问题进行抽象,用数学语言表达和解决问题的过程。同时也自然考查了阅读理解和知识迁移能力,也关注到数学的应用。
3.贴近教材提高,增大思维难度
试卷的知识构成、题型构成严格按照考纲命制,有近80%的题目体现教材的基础知识、基本技能与基本方法。选填题多数题目直接来自教材的基本概念、基本方法、基本运算或只做简单的变形,起点不高,坡度不陡,大多只涉及两三个知识条目,仅进行两三步演算,切合多数学生实际,虽然后两三题加大了思维量和运算量,但还属中档偏难一点。选择题思维量较大的理科第10、11、12题,文科第8、11、12题。填空题思维量较大的理科第15、16题,文科第15、16题。解答题思维量与运算量较大的理科第18(2)、20、21题,文科第19(2)、20、21题。
4.体现目标层次,文理差异互补
每类题型易中难搭配,从易到难。
文理科试卷除了四个小题(文、理第3题,文10理6,文理第13题,文14理4)及二选一的第22题完全相同外,其他题目都不相同。实现差异主要是撤换文科不考内容(如排列组合),降低题目难度(姐妹题)及调换前后位置三种形式。对理科少考的指数函数问题,文科多考一点。
5.重视数学文化,呈现创新元素
新考纲突出了增加数学文化内容,理科试卷在考查数学文化方面做了一些努力和尝试。通过对材料的创新设计使考生深刻地认识到中华民族优秀传统文化中注重算法的特点,为试卷注入了新的活力。
试题中出现中国古代求解一类大衍问题的方法。大衍问题源于《孙子算经》中的“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是属于现代数论中求解一次同余式方程组问题。宋代数学家秦九韶在《数书九章》(1247年成书)中对此类问题的解法作了系统的论述,并称之为大衍求一术。德国数学家C.F.高斯是在1801年才建立起同余理论的,大衍求一术反映了中国古代数学的高度成就。在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。有一首“孙子歌”,甚至远渡重洋,输入日本:
“三人同行七十稀,五树梅花廿一枝,
七子团圆正半月,除百零五便得知。”
这些饶有趣味的数学游戏,以各种不同形式,介绍世界闻名的“孙子问题”的解法,通俗地反映了中国古代数学一项卓越的成就。"孙子问题”在现代数论中是一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。《孙子算经》卷下“物不知数”题说:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?显然,这相当于求不定方程组N=3x+2,N=5y+3,N=7z+2的正整数解N,或用现代数论符号表示,等价于解下列的一次同余组:N 2(mod3) 3(mod5) 2(mod7)②《孙子算经》所给答案是N=23。由于孙子问题数据比较简单,这个答数通过试算也可以得到。但是《孙子算经》并不是这样做的。“物不知数”题的术文指出解题的方法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。将诸乘积相加,然后减去一百零五的倍数。列成算式就是:
N=70×2+21×3+15×2-2×105。
这里105是模数3、5、7的最小公倍数,容易看出,《孙子算经》给出的是符合条件的最小正整数。对于一般余数的情形,《孙子算经》术文指出,只要把上述算法中的余数2、3、2分别换成新的余数就行了。以R1、R2、R3表示这些余数,那么《孙子算经》相当于给出公式
N=70×R1+21×R2+15×R3-P×105(p是整数)。
试卷通过设置综合性、开放性、探索性试题,具有情境创新、情境多样、思维灵活的特点,既考查了学生的基本知识、基本技能,又考查了学生基本思想、基本体验活动,穾出考查学生的创新能力。
二、对下一阶段精准备考,高效复习的建议
第一:进一步夯实基础
做到百分之百的掌握,一清二楚的理解,准确无误的应用,融汇贯通的领悟。
第二:更重视通性通法
回归朴素本原,淡化特殊技巧,掌握应用概念、性质、定理等解决问题的基本方法、基本技能,也就是应用数学思想分析问题、理解问题、把握问题、探寻解题方法的基本思维方法。
第三:最重要的是形成数学核心素养
以基本能力加综合能力的培养为导向,统领三基的落实,在知识深化理解、应用中提升能力,形成素荞。
第四:再强调回归教材
对教材的例习题、相关结论要熟悉,有的结论虽不能作为定理公式应用,但可以启发思路,简化思维过程。
第五:特穾出自牫解决问题的"独立性"
面对试题需要考生自我分析问题、自我判断、自我选择方法、遇到困难自我突围。这就要求学生具有独立思考的能力、选择简捷解题方法的辨别能力、逻辑严谨的表达能力,判断结论答案合理正确的判断能力,而这些能力需在平时的解题过程中学习、训练,在教师引导下的自我反思感悟,有了自已的认识与体验,从而真正做到精准备考、高效复习。
高三数学试卷分析2选择题
本次西城区二模考试的选择题排布如下:1、集合,2、向量,3、函数值域,4、抛物线,5、不等式与逻辑用语,6、线性规划,7、三视图,8、函数参数的取值范围。其中第5题很多学生以前应该做过。这些题目基本上就是以前高频问题进行的简单改编。第8题,需要学生对于特殊函数、不等式、及范围问题的解题技巧能够综合掌握。当然,对学生而言,必须要首先把基本题目做好,如果里面出现问题,比如第4题不熟悉抛物线的焦准距与参数的关系,第7题三视图还原还有问题等,则需加以重点强化。
填空题
填空题考察的内容排布如下:9、复数,10、程序框图,11、解三角形,12、直线和圆,13、分段函数,14、计数原理。
第9题考查了“共轭”的概念,帮助学生们进一步检查知识掌握的完整性。第12题,涉及到“对称”的概念,学生们需要抓住“对称”这个条件对应的代数转化。13题分段函数,一定要熟练掌握数形结合的分析方法,注意填空题有可能会有多解。14题是一个篇幅比较大的题目,一方面,考察学生的阅读和关键数据提炼能力,另外,需要学生的逻辑思维比较清晰,必要时也可画图辅助分析。此外,学生能够有良好的心理素质、足够的信心去处理题目也是必要的。实际上题目并不难。
解答题
大题方面,15题考查的是一个正切函数,在三角这个模块的高考考察中出现频次要低一些,学生需注意“锐角”条件及规范的解答过程。16题的统计概率,题材为“餐厅满意度调查”,里面有直方图和频数分布表,该图是学生平时训练比较多的模式,理解难度比一模要简单一些,问法也较一模简单,多数学生可以做好。17题的`混合数列求和是最简单的模式,一个等差数列加上一个等比数列,构成一个新的数列,只需要注意审题,第二问的情况里面,第一问里的条件不成立。18题立体几何,包括垂直、平行的证明,以及一个是否存在类的问题,非常经典的构造,考生需注意解答过程中书写规范,以及加快分析速度节约解题时间。
最后说一下经常做压轴大题的导数与圆锥。今年西城二模导数为19题,圆锥作为最后一题。从考法上来说,19题的导数模型比较复杂,有分式、有对数,第二小问的证明“极小值大于极大值”,与以往相比具有一定新颖性,而证明题对学生也具有相当的挑战,很多学生从思路到过程平时练得都比较少。二模之后,对于基本知识掌握到一定程度的学生而言,需要着重强化证明题。
第20题,三个小问分别是标准方程、面积最值,线段大小关系判断。本题是经典圆锥曲线构造,分析难度一般低于导数最为最后一题的情形,但对考生数学量的表达能力与计算能力的要求会比较高。在最后的阶段,学生们需要再次巩固计算能力,保持手感,以应对高考中可能出现的计算量大的问题。
总体而言,本次西城二模出题比较“稳重”,很好地检验了学生的基本功及应对较热门考察套路的能力。对于水平较高的学生,做好选填大题的压轴题目,能够起到一定的训练效果,同时,注意后期加强证明题的练习,加强答题过程细节的练习,及时总结失分原因并提炼“考前写给自己的最后总结”,注意合理安排时间,寻找对提分“增量”最大的点,加以强化,注意解题时间分配的监测以思考遇到难题时的应对策略。希望考生们,能在最后一个月的高考冲刺中,抓住最后可以强化的点,再做出一些突破,并调整好状态,在高考中考出理想成绩。