您现在的位置是: 首页 > 教育政策 教育政策

高考数学文科试题,高考数学文科题库

tamoadmin 2024-06-09 人已围观

简介1.2023高考文科数学难不难2.高中数学有什么软件可以刷基础题?3.高考数学试卷如何在猿题库里面查看1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()A.B.C.D.2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第

1.2023高考文科数学难不难

2.高中数学有什么软件可以刷基础题?

3.高考数学试卷如何在猿题库里面查看

高考数学文科试题,高考数学文科题库

1.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第10题,文科数学第10题]

已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H.设四面体EFGH的表面积为T,则等于()

A.B.C.D.

2.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第16题,文科数学第16题]

已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是.

①两条平行直线②两条互相垂直的直线

③同一条直线④一条直线及其外一点

在一面结论中,正确结论的编号是(写出所有正确结论的编号).

3.[2004年全国高考(四川云南吉林黑龙江)文科数学第6题]

正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()

A.75°B.60°C.45°D.30°

4.[2004年全国高考(四川云南吉林黑龙江)理科数学第7题,文科数学第10题]

已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离均为,则

球心O到平面ABC的距离为()

A.B.C.D.

5.[2004年全国高考(四川云南吉林黑龙江)理科数学第16题,文科数学第16题]

下面是关于四棱柱的四个命题:

①若有两个侧面垂直于底面,则该四棱柱为直四棱柱

②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱

③若四个侧面两两全等,则该四棱柱为直四棱柱

④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱

其中,真命题的编号是(写出所有正确结论的编号).

6.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第9题,文科数学第10题]

正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为()

A.B.C.D.

7.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第13题,文科数学第14题]

用平面截半径为的球,如果球心到平面的距离为,那么截得小圆的面积与球的表面积的比值为.

8.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第3题]

正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为()

A.B.C.D.

9.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第7题]

对于直线m、n和平面,下面命题中的真命题是()

A.如果、n是异面直线,那么

B.如果、n是异面直线,那么相交

C.如果、n共面,那么

D.如果、n共面,那么

10.[2004年全国高考(甘肃贵州青海宁夏新疆)文科数学第11题]

已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平

面ABC的距离为()

A.1B.C.D.2

11.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第10题]

已知球的表面积为20π,球面上有A、B、C三点.如果AB=AC=2,BC=,则球心

到平面ABC的距离为()

A.1B.C.D.2

12.(2004年北京高考·理工第3题,文史第3题)

设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,,则

②若,,,则

③若,,则

④若,,则

其中正确命题的序号是

A. ①和②B. ②和③C. ③和④D. ①和④

13.(2004年北京高考·理工第4题,文史第6题)

如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是

A. 直线B. 圆C. 双曲线D. 抛物线

14.(2004年北京高考·理工第11题,文史第12题)

某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,

表面积是______________cm2

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题,满分12分]

如图,已知四棱锥 P—ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.

(I)求点P到平面ABCD的距离;

(II)求面APB与面CPB所成二面角的大小.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题,满分12分]

如图,直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=1,CB=,侧棱AA1=1,侧面AA1B1B的两条对角线交点为D,B1C1的中点为M.

(Ⅰ)求证CD⊥平面BDM;

(Ⅱ)求面B1BD与面CBD所成二面角的大小.

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题,满分12分]

三棱锥P-ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3,

(1)求证:AB ⊥ BC;

(2,理科)设AB=BC=,求AC与平面PBC所成角的大小.

(2,文科) 如果AB=BC=,求侧面PBC与侧面PAC所成二面角的大小.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题,本小题满分12分]

如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=4,侧面PAD为等边三角形,并且与底面所成二面角为60°.

(Ⅰ)求四棱锥P—ABCD的体积;

(Ⅱ)证明PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

如图,在正三棱柱中,AB=2,,由顶点B沿棱柱侧面经过棱到顶点的最短路线与的交点记为M,求:

(I)三棱柱的侧面展开图的对角线长

(II)该最短路线的长及的值

(III)平面与平面ABC所成二面角(锐角)的大小

20.(2004年北京高考·理工第16题,本小题满分14分)

如图,在正三棱柱中,AB=3,,M为的中点,P是BC上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:

(I)该三棱柱的侧面展开图的对角线长

(II)PC和NC的长

(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)

参考答案

1.A2.①②④3.C4.B5.②④6.C7.8.A9.C

10.A11.A12.A13.D14.

15.[2004年全国高考(山东山西河南河北江西安徽卷)理科数学第20题,文科数学第21题]

本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.

(I)解:如图,作PO⊥平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE.

∵AD⊥PB,∴AD⊥OB,

∵PA=PD,∴OA=OD,

于是OB平分AD,点E为AD的中点,所以PE⊥AD.

由此知∠PEB为面PAD与面ABCD所成二面角的平面角,

∴∠PEB=120°,∠PEO=60°

由已知可求得PE=

∴PO=PE·sin60°=,

即点P到平面ABCD的距离为.

(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.

.连结AG.

又知由此得到:

所以

等于所求二面角的平面角,

于是

所以所求二面角的大小为.

解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AG⊥PB,FG//BC,FG=BC.

∵AD⊥PB,∴BC⊥PB,FG⊥PB,

∴∠AGF是所求二面角的平面角.

∵AD⊥面POB,∴AD⊥EG.

又∵PE=BE,∴EG⊥PB,且∠PEG=60°.

在Rt△PEG中,EG=PE·cos60°=.

在Rt△PEG中,EG=AD=1.

于是tan∠GAE==,

又∠AGF=π-∠GAE.

所以所求二面角的大小为π-arctan.

16.[2004年全国高考(四川云南吉林黑龙江)理科数学第20题,文科数学第20题]

本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力.

满分12分.

解法一:(Ⅰ)如图,连结CA1、AC1、CM,则CA1=

∵CB=CA1=,∴△CBA1为等腰三角形,

又知D为其底边A1B的中点,

∴CD⊥A1B.∵A1C1=1,C1B1=,∴A1B1=

又BB1=1,A1B=2. ∵△A1CB为直角三角形,D为A1B的中点,

∴CD=A1B=1,CD=CC1,又DM=AC1=,DM=C1M.

∴△CDM≌△CC1M,∠CDM=∠CC1M=90°,即CD⊥DM.

因为A1B、DM为平在BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设F、G分别为BC、BD的中点,连结B1G、FG、B1F,则FG//CD,FG=CD.

∴FG=,FG⊥BD.

由侧面矩形BB1A1A的对角线的交点为D知BD=B1D=A1B=1,

所以△BB1D是边长为1的正三角形.

于是B1G⊥BD,B1G=∴∠B1GF是所求二面角的平面角,

又 B1F2=B1B2+BF2=1+(=,

即所求二面角的大小为

解法二:如图,以C为原点建立坐标系.

(Ⅰ)B(,0,0),B1(,1,0),A1(0,1,1),

D(,M(,1,0),

则∴CD⊥A1B,CD⊥DM.

因为A1B、DM为平面BDM内两条相交直线,所以CD⊥平面BDM.

(Ⅱ)设BD中点为G,连结B1G,则

G(),、、),

所以所求的二面角等于

17.[2004年全国高考(陕西广西海南西藏内蒙古)理科数学第20题,文科数学第21题]

本小题主要考查两个平面垂直的性质、直线与平面所成角等有关知识,以及逻辑思维能力和空间想象能力.满分12分.

(Ⅰ)证明:如图1,取AC中点D,连结PD、BD.

因为PA=PC,所以PD⊥AC,又已知面PAC⊥面ABC,

所以PD⊥面ABC,D为垂足.

因为PA=PB=PC,所以DA=DB=DC,

可知AC为△ABC的外接圆直径,因此AB⊥BC.

(Ⅱ,理科)解:如图2,作CF⊥PB于F,连结AF、DF.

因为△PBC≌△PBA,所以AF⊥PB,AF=CF.

因此,PB⊥平面AFC,

所以面AFC⊥面PBC,交线是CF,

因此直线AC在平面PBC内的射影为直线CF,

∠ACF为AC与平面PBC所成的角.

在Rt△ABC中,AB=BC=2,所以BD=

在Rt△PDC中,DC=

在Rt△PDB中,

在Rt△FDC中,所以∠ACF=30°.

即AC与平面PBC所成角为30°.

(2,文科)解:因为AB=BC,D为AC中点,所以BD⊥AC.

又面PAC⊥面ABC,

所以BD⊥平面PAC,D为垂足.

作BE⊥PC于E,连结DE,

因为DE为BE在平面PAC内的射影,

所以DE⊥PC,∠BED为所求二面角的平面角.

在Rt△ABC中,AB=BC=,所以BD=.

在Rt△PDC中,PC=3,DC=,PD=,

所以

因此,在Rt△BDE中,,

所以侧面PBC与侧面PAC所成的二面角为60°.

18.[2004年全国高考(甘肃贵州青海宁夏新疆)理科数学第20题,文科数学第21题]

本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析

问题能力.满分12分

解:(Ⅰ)如图1,取AD的中点E,连结PE,则PE⊥AD.

作PO⊥平面在ABCD,垂足为O,连结OE.

根据三垂线定理的逆定理得OE⊥AD,

所以∠PEO为侧面PAD与底面所成的二面角的平面角,

由已知条件可知∠PEO=60°,PE=6,

所以PO=3,四棱锥P—ABCD的体积

VP—ABCD=

(Ⅱ)解法一:如图1,以O为原点建立空间直角坐标系.通过计算可得

P(0,0,3),A(2,-3,0),B(2,5,0),D(-2,-3,0)

所以

因为所以PA⊥BD.

解法二:如图2,连结AO,延长AO交BD于点F.通过计算可得EO=3,AE=2,

又知AD=4,AB=8,

所以Rt△AEO∽Rt△BAD.

得∠EAO=∠ABD.

所以∠EAO+∠ADF=90°

所以AF⊥BD.

因为直线AF为直线PA在平面ABCD 内的身影,所以PA⊥BD.

19.(2004年北京高考·文史第16题,本小题满分14分)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是长为6,宽为2的矩形

其对角线长为

(II)如图,将侧面绕棱旋转使其与侧面在同一平面上,点B运动到点D的位置,连接交于M,则就是由顶点B沿棱柱侧面经过棱到顶点C1的最短路线,其长为

(III)连接DB,,则DB就是平面与平面ABC的交线

在中

由三垂线定理得

就是平面与平面ABC所成二面角的平面角(锐角)

侧面是正方形

故平面与平面ABC所成的二面角(锐角)为

20.(2004年北京高考·理工第16题)

本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力。满分14分。

解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为

(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线

设,则,在中,由勾股定理得

求得

(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,

就是平面NMP与平面ABC所成二面角的平面角(锐角)

在中,

在中,

故平面NMP与平面ABC所成二面角(锐角)的大小为

2023高考文科数学难不难

孩子,07年的新课标卷是宁夏海南卷。

2007年普通高等学校招生全国统一考试

文科数学(宁夏、 海南卷)

本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第II卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.

注意事项:

1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上

的准考证号、姓名,并将条形码粘贴在指定位置上.

2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂基他答案标号,非选择题答案使用毫米的黑色中性(签字)笔或炭素笔书写,字体工整、笔迹清楚.

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.

4.保持卡面清洁,不折叠,不破损.

5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.

参考公式:

样本数据,,,的标准差 锥体体积公式

其中为标本平均数 其中为底面面积,为高

柱体体积公式 球的表面积、体积公式

其中为底面面积,为高 其中为球的半径

第Ⅰ卷

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,

只有一项是符合题目要求的.

1.设集合,则(  )

A. B.

C. D.

解析由,可得.

答案:A

2.已知命题,,则(  )

A., B.,

C., D.,

解析是对的否定,故有:

答案:C

3.函数在区间的简图是(  )

解析排除B、D,排除C。也可由五点法作图验证。

答案:A

4.已知平面向量,则向量(  )

A. B.

C. D.

解析

答案:D

5.如果执行右面的程序框图,那么输出的(  )

A.2450 B.2500

C.2550 D.2652

解析由程序知,

答案:C

6.已知成等比数列,且曲线的顶点是,则等于(  )

A.3 B.2 C.1 D.

解析曲线的顶点是,则:由

成等比数列知,

答案:B

7.已知抛物线的焦点为,点,

在抛物线上,且,则有(  )

A. B.

C. D.

解析由抛物线定义,即:.

答案:C

8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),

可得这个几何体的体积是(  )

A. B.

C. D.

解析如图,

答案:B

9.若,则的值为(  )

A. B.  C. D.

解析

答案:C

10.曲线在点处的切线与坐标轴所围三角形的面积为(  )

A. B. C. D.

解析:曲线在点处的切线斜率为,因此切线方程为则切线与坐标轴交点为所以:

答案:D

11.已知三棱锥的各顶点都在一个半径为的球面上,

球心在上,底面,,

则球的体积与三棱锥体积之比是(  )

A. B. C. D.

解析如图,

答案:D

12.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表

甲的成绩

环数 7 8 9 10

频数 5 5 5 5

乙的成绩

环数 7 8 9 10

频数 6 4 4 6

丙的成绩

环数 7 8 9 10

频数 4 6 6 4

分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有(  )

A. B.

C. D.

解析

答案:B

第Ⅱ卷

本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题为选考题,考生根据要求做答.

二、填空题:本大题共4小题,每小题5分.

13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,

则该双曲线的离心率为     .

解析如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,

则:

答案:3

14.设函数为偶函数,则    .

解析

答案:-1

15.是虚数单位,     .(用的形式表示,)

解析

答案:

16.已知是等差数列,,其前5项和,则其公差    .

解析

答案:

三、解答题:解答应写出文字说明,证明过程或演算步骤.

17.(本小题满分12分)

如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与.现测得,并在点测得塔顶的仰角为,求塔高.

解析在中,.

由正弦定理得.

所以.

在中,.

18.(本小题满分12分)

如图,为空间四点.在中,.

等边三角形以为轴运动.

(Ⅰ)当平面平面时,求;

(Ⅱ)当转动时,是否总有?

证明你的结论.

解析(Ⅰ)取的中点,连结,

因为是等边三角形,所以.

当平面平面时,

因为平面平面,

所以平面,

可知

由已知可得,在中,.

(Ⅱ)当以为轴转动时,总有.

证明:

(ⅰ)当在平面内时,因为,

所以都在线段的垂直平分线上,即.

(ⅱ)当不在平面内时,由(Ⅰ)知.又因,所以.

又为相交直线,所以平面,由平面,得.

综上所述,总有.

19.(本小题满分12分)设函数

(Ⅰ)讨论的单调性;

(Ⅱ)求在区间的最大值和最小值.

解析的定义域为.

(Ⅰ).

当时,;当时,;当时,.

从而,分别在区间,单调增加,在区间单调减少.

(Ⅱ)由(Ⅰ)知在区间的最小值为.

又.

所以在区间的最大值为.

20.(本小题满分12分)设有关于的一元二次方程.

(Ⅰ)若是从四个数中任取的一个数,是从三个数中任取的一个数,

求上述方程有实根的概率.

(Ⅱ)若是从区间任取的一个数,是从区间任取的一个数,

求上述方程有实根的概率.

解析设事件为“方程有实根”.

当,时,方程有实根的充要条件为.

(Ⅰ)基本事件共12个:

其中第一个数表示的取值,第二个数表示的取值.

事件中包含9个基本事件,事件发生的概率为.

(Ⅱ)试验的全部结束所构成的区域为.

构成事件的区域为.

所以所求的概率为.

21.(本小题满分12分)

在平面直角坐标系中,已知圆的圆心为,过点

且斜率为的直线与圆相交于不同的两点.

(Ⅰ)求的取值范围;

(Ⅱ)是否存在常数,使得向量与共线?如果存在,求值;

如果不存在,请说明理由.

解析(Ⅰ)圆的方程可写成,所以圆心为,过

且斜率为的直线方程为.

代入圆方程得,

整理得.   ①

直线与圆交于两个不同的点等价于

解得,即的取值范围为.

(Ⅱ)设,则,

由方程①,

又.    ③

而.

所以与共线等价于,

将②③代入上式,解得.

由(Ⅰ)知,故没有符合题意的常数.

22.请考生在A、B两题中任选一题作答,如果多做,则按所做的第一题记分.作答时,

用2B铅笔在答题卡上把所选题目对应的标号涂黑.

22.A(本小题满分10分)选修4-1:几何证明选讲

如图,已知是的切线,为切点,是的割线,与

交于两点,圆心在的内部,点是的中点.

(Ⅰ)证明四点共圆;

(Ⅱ)求的大小.

解析(Ⅰ)证明:连结.

因为与相切于点,所以.

因为是的弦的中点,所以.

于是.

由圆心在的内部,可知四边形的对角互补,

所以四点共圆.

(Ⅱ)解:由(Ⅰ)得四点共圆,所以.

由(Ⅰ)得.

由圆心在的内部,可知.

所以.

22.B(本小题满分10分)选修4-4:坐标系与参数方程

和的极坐标方程分别为.

(Ⅰ)把和的极坐标方程化为直角坐标方程;

(Ⅱ)求经过,交点的直线的直角坐标方程.

解析以有点为原点,极轴为轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.

(Ⅰ),,由得.

所以.

即为的直角坐标方程.

同理为的直角坐标方程.

(Ⅱ)由

解得.

即,交于点和.

过交点的直线的直角坐标方程为.

高中数学有什么软件可以刷基础题?

2023高考文科数学不难

高考数学一直都是很多学生的“心病”,毕竟高考数学不会是真的不会,编都编不出来。在今年高考数学结束之后,“高考数学”“高考数学难不难”“新高考一卷数学 大题难”纷纷登上了热搜榜。

2023年高考数学乙卷的难度相比去年差不太多,但对于考生来说,要取得理想的成绩仍需要具备扎实的数学功底、良好的应试心态和全面掌握试题的难点与解题思路。

部分同学表示全国乙卷高考文科数学难度是比较大的,乙卷数学就属于刚拿到试卷的时候,浏览一遍觉得还行,但是真正做起来难度是比较大的,计算量真的非常多。

这对于高考考生来说可能带来一定的挑战,但也是他们成长和提高的机会。全国乙卷高考文科数学试题一般就是按步骤给分,没有太多的灵活性。在估数学分时,重点在大题的估分上,要按步骤算分,解题的方法可能不一样,但是在步骤上相当的位置会给同样的分。

全国乙卷高考文科数学试题计算题不要只看结果就断定自己一定满分或是一定零分。高考试卷答案上都有很明显的步骤分,不要去看结果,结果充其量也就一分。一定要看好全国乙卷高考文科数学试题答案的给分点步骤你有没有,如果没有那么一定没有分,及时你答案对了。

高考数学试卷如何在猿题库里面查看

很多学习成绩较差或者不爱学习的学生,在高中阶段会选择进入职高学校学习,这些学生的学习基础不太好,所以平时刷题时也应该选择一些基础问题,那么适合职高生刷题的软件有哪些呢?我们一起来看看。

1、高中数学君app。这是一款针对职高和高中生比较实用的一款数学学习软件,软件内有非常多的教学学习资源,学生可以根据自己的基础选择刷题的难度。这款软件提供了免费观看教学视频的功能,学生可以从视频中学到基础知识,并且这个软件中有大量的题库,可以让学生更快速掌握基础知识点,理解解题思路。

2、金榜树app。这款App中也提供了免费的练习题和考试测试,职高的学生可以根据自己的基础知识选择练习题的难度,并在软件中进行练习。这款软件还提供了视频教学功能,并且这些视频都可以离线下载观看,可以实现随时随地学习。

很多职高的学生也要正常参加高考,数学作为高考中比较重要的一个科目还是需要多刷题。适合职高生刷题的软件还有很多,职高生在通过大量的练习之后,学习成绩也会有所提高,可以结合自己的基础选择适合自己的。

今天2021年高考开始了,很多小伙伴们都参加了高考,有些小伙伴们高考完之后想要查看高考试卷来方便对分,那么接下来我就教大家如何在猿题库里面查看2021年高考数学试卷。

2021高考数学试卷如何在猿题库里面查看

打开APP

打开猿题库APP,来到试卷页面。

打开搜索栏

在试卷页面,点击右上角打开搜索栏。

搜索试卷

在搜索栏搜索你要查看的试卷,然后点击就可以查看了。

文章标签: # 平面 # 高考 # 数学