您现在的位置是: 首页 > 教育政策 教育政策

数学高考大题及答案,高考数学试卷大题

tamoadmin 2024-06-26 人已围观

简介1.2022年浙江高考数学试题及答案2.高考数学大题。3.2010年高考《数学(理科)》真题-江西卷第1大题第10小题如何解答?4.2022高考数学大题题型总结_数学大题题型5.2010年上海 理科数学高考试卷 20题答案 2018年浙江高考数学试卷试题及答案解析(答案WORD版) 2015年浙江省高考数学命题思路 (数学学科组) 2015年高考是浙江省普通高中深化课程改革首届学生的首次

1.2022年浙江高考数学试题及答案

2.高考数学大题。

3.2010年高考《数学(理科)》真题-江西卷第1大题第10小题如何解答?

4.2022高考数学大题题型总结_数学大题题型

5.2010年上海 理科数学高考试卷 20题答案

数学高考大题及答案,高考数学试卷大题

2018年浙江高考数学试卷试题及答案解析(答案WORD版)

2015年浙江省高考数学命题思路

(数学学科组)

2015年高考是浙江省普通高中深化课程改革首届学生的首次高考,考试范围和要求都有一定的变化。数学试卷遵循《考试说明》,不超纲;依照《教学指导意见》,不偏离;贴近高中数学教学实际,不脱节。

试卷延续了叙述简洁、表达清楚的一贯风格,难度稳定,并呈现出稳中有变,变中求新的特点。

1.稳定考查基础,推陈出新

2015年高考考查范围虽有变化,但试卷仍然稳定考查高中数学主干知识,既关注新增知识点,也注意典型问题和传统方法。理科第4题考查新增知识点,它要求学生对命题有清晰的认识;理科第8题以常见的图形翻折为背景,考查空间想象能力。

2.稳定能力要求,角度变换

试卷在落实基础知识和基本技能的同时,注重对数学思维和数学本质的考查。理科第6题是学习型问题,它依托教材,设问清楚,现学现用;理科第20题以常见二次函数和简单递推为载体构建问题,角度新颖,思维灵活;理科第15题通过空间向量的平台,利用不等式关系,体现最小值的本质,问题的结构特点能让学生有多角度的思考空间。

3.稳定文理差异,逐步调整

试卷关注文理学生的学习差异,文理卷只有一题相同,文科卷中有5题由理科题改编而来。文科第8题由理科第7题改编,问题由抽象变具体,减少了思维量,降低了难度;理科第14题改变数据成为文科第14题,避免了分类讨论,简化了问题;文科第6题是一个生活实际问题,它体现了数学的应用性,这样的变化显示了文理的不同要求。

4.稳定试卷框架,形式渐变

试卷整体结构稳定,充分发挥了三种题型的不同功能。选择题重视概念的本质,要求判断准确。填空题关注计算的方法,要求结论正确,多空题的出现,更好的分散了难点,让学生能分步得分。解答题以多角度、全方位的思考为突破口,展示计算和推理的过程。试卷由22题减为20题,总题量的减少为学生提供了更多的思考时间。

试卷重基础、优思维、减总量、调结构。从基本的函数、常见的图形、简单的递推、熟悉的符号中挖掘出新的设问。它强化本质,强调思维的深刻性;它关注方法,注重思维的灵活性。它导向正确,让数学学习关注本质,课堂教学回归学生。

2015年浙江省高考数学试题评析

调整试卷结构凸显能力考查

绍兴一中特级教师虞金龙

浙江省教研室特级教师张金良

今年的高考数学试卷,延续了浙江省多年的命题风格,保持了“低起点、宽入口、多层次、区分好”的特色,试题的题型和背景熟悉而常见,整体感觉试题灵活,思维含量高,能充分考查学生的数学素养、思维品质、学习潜能,有很好的区分度和选拔功能。试卷主要体现了以下特点:

1.考查双基、注重覆盖

试卷全面考查了高中数学的基础知识和基本技能,着重考查了中学数学教材中的主干知识,准确把握了高中数学的教学重点。试题覆盖了高中数学的核心知识,涉及了函数的概念、单调性、周期性、最大值与最小值、三角函数、数列、立体几何、解析几何等主要知识,考查全面而又深刻,甚至容易被忽视的存在量词也进行了必要的考查。

2.注重思维、凸显能力

今年的试题看似熟悉平淡,但将数学思想方法和素养作为考查的重点,提高了试题的层次和品位,能力考查步伐加大,许多试题保持了干净、简洁、朴实、明了的特点,充分体现了数学语言的形式化与数学的意义,对考生的数学语言的.阅读、理解、转化、表达等能力提出了较高的要求。如理科第7、8、14、15、18、20题,文科第8、15、20(2)题等,数学形式化程度高,不仅需要考生有较强的数学阅读与审题能力,而且需要考生有灵活机智的解题策略与分析问题解决问题的综合能力。

3.分层考查、文理有别

试题层次分明,由浅入深,各类题型的起点难度较低,但落点较高,选择、填空题的前几道不需花太多时间就能破题,而后几题则需要在充分理解数学概念的基础上灵活应变;解答题的5个题目中共有10个小题,仍然具有往年的“多问把关”的命题特点。试卷关注文理考生在数学学习方面的差异。理科特点突出,注重考查理性思维和抽象概括能力,文科注重考查形象思维和定量处理能力。全卷文理相同题仅有1题,姐妹题也只有2题,文科较理科在许多方面都作了适当的降低。

4.稳中有变、坚持创新

创新是时代的特征,试卷在三类题型不变的基础上,在试卷结构与命题手法上作了创新,改变以往一成不变的模式,减少了两个选择题,丰富了填空题的形式,出现了一题多空。在命题手法上,通过改造、移植、嫁接的方法编制了一批立意深远、背景丰富、表述简洁的新题。如理科第8题看似简单,但颇值得回味;理科第15题题型新颖,背景深刻,过程简练,不落俗套;理科第18题在经典的二次函数中植入新的设问,令人耳目一新;理科压轴题简洁灵活,独具匠心,需要考生冷静分析后破题;文科第8题在椭圆定义与平面几何性质上做文章,平淡中出新招,凸显了数学的魅力。

统揽全卷,试卷传递一个信息:考生盲目的题海战术,做再多的题也不能考出理想的成绩。高中数学教学要让学生感受到基础知识和基本技能的重要性,要引导学生学会在“看、做、想、研”的基础上做题。

2022年浙江高考数学试题及答案

2005年江西高考数学试卷(理科)

一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设集合 则

(A) (B) (C) (D)

2.设复数 若 为实数,则

(A) (B) (C) (D)

3.“ ”是“直线 与圆 相切”的

(A)充分不必要条件 (B)必要不充分条件

(C)充分必要条件 (D)既不充分又不必要条件

4. 的展开式中,含 的正整数次幂的项共有

(A)4项 (B)3项 (C)2项 (D)1项

5.设函数 ,则 为

(A)周期函数,最小正周期为 (B)周期函数,最小正周期为

(C)周期函数,最小正周期为 (D)非周期函数

6.已知向量 ,若 ,则 与 的夹角为

(A) (B) (C) (D)

7.已知函数 的图象如右图所示

(其中 是函数 的导函数).下

面四个图象中 的图象大致是

8.若 ,则

(A) (B) (C) (D)

9.矩形ABCD中, ,沿AC将矩形ABCD折成一个直二面角 ,则四面体ABCD的外接球的体积为

(A) (B) (C) (D)

10.已知实数 满足等式 ,下列五个关系式

① ② ③ ④ ⑤

其中不可能成立的关系式有

(A)1个 (B)2个 (C)3个 (D)4个

11.在 中,O为坐标原点, ,则当 的面积达到最大值时,

(A) (B) (C) (D)

12.将 这 个数平均分成三组,则每组的三个数都成等差数列的概率为

(A) (B) (C) (D)

二.填空题:本大题共的小题,每小题4分,共16分.请把答案填在答题卡上.

13.若函数 是奇函数,则

14.设实数 满足 ,则 的最大值是_____

15.如图,在直三棱柱 中,

分别为 的中点,沿棱柱的表面从

E到F两点的最短路径的长度为______

16.以下四个关于圆锥曲线的命题中

①设A、B为两个定点, 为非零常数,若 ,则点P的轨迹为双曲线;

②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若 ,则动点P的轨迹为椭圆;

③方程 的两根可分别作为椭圆和双曲线的离心率;

④双曲线 与椭圆 有相同的焦点.

其中真命题的序号为________(写出所有真命题的序号).

三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.

17.(本小题满分12分)

已知函数 为常数),且方程 有两个实根为

(1)求函数 的解析式;

(2)设 ,解关于 的不等式:

18.(本小题满分12分)

已知向量 ,令

是否存在实数 ,使 (其中 是 的导函数)?若存在,则求

出 的值;若不存在,则证明之.

19.(本小题满分12分)

A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢

得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达到9次时,或在此前某人已赢

得所有卡片时游戏终止.设 表示游戏终止时掷硬币的次数.

(1)求 的取值范围;

(2)求 的数学期望

20.(本小题满分12分)

如图,在长方体 中, ,点E在棱AB上移动.

(1)证明: ;

(2)当EAB的中点时,求点E到面 的距离;

(3)AE等于何值时,二面角 的大小为 .

21.(本小题满分12分)

已知数列 的各项都是正数,且满足:

(1)证明

(2)求数列 的通项公式

22.(本小题满分14分)

如图,设抛物线 的焦点为F,动点P

在直线 上运动,过P作抛物线

C的两条切线PA、PB,且与抛物线C分别相切

于A、B两点

(1)求 的重心G的轨迹方程;

(2)证明

2005年普通高等学校招生全国统一考试(江西卷)

理科数学参考答案

一、选择题

1.D 2.A 3.A 4.B 5.B 6.C 7.C 8.C 9.C 10.B 11.D 12.A

二、填空题

13. 14. 15. 16.③④

三、解答题

17.解:(1)将 得

(2)不等式即为

①当

②当

③ .

18.解:

19.解:(1)设正面出现的次数为m,反面出现的次数为n,则 ,可得:

(2)

20.解法(一)

(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E

(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1= ,AD1= ,

(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,

∴∠DHD1为二面角D1—EC—D的平面角.

设AE=x,则BE=2-x

解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因为E为AB的中点,则E(1,1,0),从而 ,

,设平面ACD1的法向量为 ,则

也即 ,得 ,从而 ,所以点E到平面AD1C的距离为

(3)设平面D1EC的法向量 ,∴

由 令b=1, ∴c=2,a=2-x,

依题意

∴ (不合,舍去), .

∴AE= 时,二面角D1—EC—D的大小为 .

21.解:(1)方法一 用数学归纳法证明:

1°当n=1时,

∴ ,命题正确.

2°假设n=k时有

∴ 时命题正确.

由1°、2°知,对一切n∈N时有

方法二:用数学归纳法证明:

1°当n=1时, ∴ ;

2°假设n=k时有 成立,

令 , 在[0,2]上单调递增,所以由假设

有: 即

也即当n=k+1时 成立,所以对一切

(2)下面来求数列的通项: 所以

,

又bn=-1,所以

22.解:(1)设切点A、B坐标分别为 ,

∴切线AP的方程为:

切线BP的方程为:

解得P点的坐标为:

所以△APB的重心G的坐标为 ,

所以 ,由点P在直线l上运动,从而得到重心G的轨迹方程为:

(2)方法1:因为

由于P点在抛物线外,则

同理有

∴∠AFP=∠PFB.

方法2:①当 所以P点坐标为 ,则P点到直线AF的距离为:

所以P点到直线BF的距离为:

所以d1=d2,即得∠AFP=∠PFB.

②当 时,直线AF的方程:

直线BF的方程:

所以P点到直线AF的距离为:

,同理可得到P点到直线BF的距离 ,因此由d1=d2,可得到∠AFP=∠PFB.

高考数学大题。

高考已经结束了,那么大多数考生比较关注的浙江高考数学试题及答案也已经出炉了,下面我给大家带来2022年浙江高考数学试题及答案,希望大家喜欢!

2022年浙江高考数学真题

2022年浙江高考数学真题答案

2022高考志愿填报指南

1.提前了解政策规定、搜集信息。

全面了解国家和我省招生政策规定及有关高校招生章程,了解自己省份的志愿设置、志愿填报时间、投档录取规则等情况。

这些名词你要了解:

①平行志愿:即指采用平行志愿录取投档,考生在同一位置所选的A、B、C、D等志愿之间是平行关系。即改以往的“志愿优先”为“分数优先”,将达到批次录取最低控制 分数线 的考生,按考生成绩从高分到低分的顺序,由计算机对每个考生所填报的平行院校志愿,依次检索。平行志愿在一定程度上降低了志愿填报的风险。

②投档线:由各省 教育 考试院确定。以院校为单位,按招生院校同一科类的招生计划的一定比例(1:1.3以内)。假设一个省份1:1.2的比例提取考生档案,简单地讲就是招生名额只有100个,被提档的考生却有120人,若高校在招生章程中承诺:“当考生所填报的所有专业不能满足时,服从专业调剂,身体合格,符合录取条件,进档不退档”。考生若符合院校的此规定,不会被退档。高校如果没有相关承诺会有退档风险。

③志愿滑档与退档:滑档是这个批次没有被提档,滑过去了,原因就是分数没有达到所有考生任一报考学校的最低投档线。滑档是达到学校被最低投档线,被某学校提档,但又有条件不满足学校要求,学校就把你的档案退回给招生考试院。

④大类招生:大类招生是按学科大类招生,进校后再根据意愿分流具体专业,这是目前的一个主流招生模式,避免学生选择自己不适合的专业。

2.根据高考成绩、成绩排序位次和有关高校的情况,确定拟报考院校专业组或专业范围。

(1)根据一份一段表查询省内排名:高考是省内竞争,比分数更重要的是排名,考生在查询到自己的高考成绩后可以对照一分段表确定自己在本省同类考生中的位次情况。一分段表实际上就是一个参照系,考生要充分利用这个统计表,参考往年有关数据作一些相关分析,精准定位可以匹配的高校层次。

(2)定位高校:根据查询出来的学校层次定位院校。需要结合院校的招生简章、在本省的招生计划、近三年在本省招生的投档线和分数段、招收专业在本省录取分数的排名。并且要明确院校的招生要求、招生人数,结合自己的体检 报告 、 英语口语 等级等,不要误选,如果自己不符合高校招生条件是无法被录取的。

(3)缩小范围,在圈定高校中结合自身条件、 兴趣 爱好 、能力优势、个性特色。家庭状况、就业趋势等维度。

①自身条件

很多专业会要求学生身体健康,政治背景…比如化学、化工、光谱物理等专业,对于人的颜色辨别能力要求很高,色盲或色弱者不能报考;采矿、勘探等专业对考生身体状况提出了较髙的要求,一般只招男性,体质较弱及女生不宜报考,而某些医学院校的护理专业有时只招女生等。

②兴趣

兴趣是一个人从事学习、工作等活动的内在心理需要。因此,考生选择自己有浓厚兴趣的专业,对自己以后学习、工作的积极性和主动性将产生很大的影响,也是未来专业学习和职业发展的前提条件。

③能力优势

一个人有了学习的兴趣不等于就能够学好选择的专业,还必须考虑考生是否具备学习该专业的能力,只有具备这方面的能力,才有可能学好自己选择的专业,在未来职业发展中有所成就。因此,考生的能力优势也是报考志愿应重点考虑的指标之一。

④个性特点

不同的大学专业和职业,对个人的个性特点的要求也是不一样的,如学习工商管理、 人力资源管理 和经济管理方面的专业和从事这方面职业的人在乐群性、世故性、恃强性等方面应具有较高的表现,而从事机械工程和技术方面的人在这几方面的表现就要低一些。各职业领域对人员个性特点的要求也有所区别。

⑤家庭状况

家庭经济状况不一样,在志愿上对大学的选择应有所区别.比如工薪阶层,家庭没有多少积蓄,一心想去中外合作办学经济上是有压力的,家庭比较富裕的考生,在填报志愿时相对比较宽松。

⑥就业趋势

建议孩子在志愿填报前可以做一些就业方向的测试,明确自己 毕业 后的工作方向,根据情况报考。当然家长需要帮忙梳理下未来的就业形式,哪些专业好就业。比如就业后想 考公务员 可以报考 财经 、法学、语言、计算机类;想学医又不想又太大工作压力可以选择口腔医学、护理、医药类……

(4)锁定院校和专业

至少分三类:

冲(根据最近三年招生情况,觉得被录取有希望但希望较小)

稳(根据最近三年招生情况,觉得被录取希望很大)

保(根据最近三年招生情况,基本确保会被录取)

(5)把握时间节点

考试结束,等待公布成绩、公布控制分数线、各批次志愿填报及录取结果、征集志愿等 很多事情需要关注,这些都关系到考生的切身利益。

尤其征集志愿时间不会太长,考生需要经常查看自己志愿状态,如果被滑档或退档不要着急,可以选择征集志愿在次投递,不然就只能选择下一报考批次了

2022年浙江高考数学试题及答案相关 文章 :

★ 2022年新高考一卷数学卷试题及答案解析

★ 2022年高考数学试题及答案(新高考二卷)

★ 2022新高考全国一卷数学试卷答案解析

★ 2022年全国新高考I卷数学真题及答案解析

★ 2022年全国Ⅰ卷高考数学试题及参考答案公布

★ 2022新高考全国1卷数学真题及答案

★ 2022年全国Ⅰ卷高考数学试题及参考答案出炉

★ 2022新高考数学试题及答案详解

★ 2022年高考数学卷真题及答案解析(全国新高考1卷)

★ 2022新高考数学Ⅰ卷试卷及参考答案

2010年高考《数学(理科)》真题-江西卷第1大题第10小题如何解答?

你附的答案的错误的!

1)你的思路正确, 不过

用√表示甲赢,×表示甲输

√ × × 0.6×0.4×0.4 应改为 0.6×0.4×0.6=0.144 也就是第三局甲输的概率=乙赢的概率=0.6

× √ × 0.4×0.6×0.4 应改为 0.4×0.6×0.6=0.144

× × √ 0.4×0.4×0.6 应改为 0.4×0.4×0.4=0.0

故甲乙比分为1:2的概率为0.144+0.144+0.0=0.352

或者 直接计算:x1,x2,x3 分别表示甲第一,二,三局的得分

P(x1+x2+x3=1)=P(x1+x2=1,x3=0)+P(x1+x2=0,x3=1)

=P(x1+x2=1)P(x3=0)+P(x1+x2=0)P(x3=1)

=(2×0.6×0.4)×0.6+(0.4×0.4)×0.4

=0.288+0.0=0.352=P(乙得2分)

2)同理 P(x1+x2+x3=0)=P(x1=0)P(x2=0)P(x3=0)=0.4×0.4×0.6=0.096=P(乙得3分)

P(x1+x2+x3=3)=P(x1=1)P(x2=1)P(x3=1)=0.6×0.6×0.4=0.144=P(乙得0分)

所以 P(x1+x2+x3=2)=P(x1+x2=1,x3=1)+P(x1+x2=2,x3=0)

=P(x1+x2=1)P(x3=1)+P(x1+x2=2)P(x3=0)

=(2×0.6×0.4)×0.4+(0.6×0.6)×0.6

=0.192+0.216=0.408=P(乙得1分)

Eξ=0.408×1+0.352×2+0.096×3=1.3

2022高考数学大题题型总结_数学大题题型

10.过正方体 的顶点A作直线L,使L与棱 , , 所成的角都相等,这样的直线L可以作

A.1条 B.2条 C.3条 D.4条

答案D

解析考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力。第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条。

2010年上海 理科数学高考试卷 20题答案

普通高中学校招生全国统一考试,是为普通高等学校招生设置的全国性统一考试,一般是每年6月7日-8日考试。 参加考试的对象一般是全日制普通高中 毕业 生和具有同等学历的中华人民共和国公民,下面是我整理的关于2022高考数学大题题型 总结 ,欢迎阅读!

2022高考数学大题题型总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

高考数学题型特点和答题技巧

1.选择题——“不择手段”

题型特点:

(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

解题策略:

(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。

(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

2.填空题——“直扑结果”

题型特点:

填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生独立思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。

填空题的考点少,目标集中。否则,试题的区分度差,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。

解题策略:

由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:

一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;

二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;

三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

3.解答题——“步步为营”

题型特点:

解答题与填空题比较,同居提供型的试题,但也有本质的区别。

首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;

其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。

评分办法:

数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷 经验 的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

(2)何为“分段得分”:

对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。

有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。

有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。

因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。

如果不能,说明这个途径不对,立即改变方向;

如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。

③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。

如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。

(3)能力不同,要求有变:

由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。

针对基础较差、以二类本科为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!

针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。

针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。

高中数学答题技巧

(1)填写好全部考生信息,检查试卷有无问题;

(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);

(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

2022高考数学大题题型总结_数学大题题型相关 文章 :

★ 高考数学答题技巧方法及易错知识点

★ 做好高考数学题的方法技巧有哪些

★ 2022高三数学学习方法总结

★ 2022年高考数学前十天如何复习最有效

★ 高三数学二轮复习策略2022

★ 高考数学知识点最新归纳

★ 2022高三数学知识点整理

★ 2022年高三数学第二轮复习方法

★ 2022年高考复习技巧及方法(最新)

★ 高三数学知识点总结框架

20.?(本题满分13分)本题共有2个?小题,第一个小题满分5分,第2个小题满分8分。

已知数列?的前?项和为?,且?,?

(1)证明:?是等比数列;

(2)求数列?的通项公式,并求出n为何值时,?取得最小值,并说明理由。

(2)?=n=15取得最小值

解析:(1)?当n?1时,a1?14;当n≥2时,an?Sn?Sn?1?5an?5an?1?1,所以?,

又a1?1?15≠0,所以数列{an?1}是等比数列;

(2)?由(1)知:?,得?,从而?(n?N*);

解不等式Sn<Sn?1,得?,?,当n≥15时,数列{Sn}单调递增;

同理可得,当n≤15时,数列{Sn}单调递减;故当n?15时,Sn取得最小值.

详细见下图:

文章标签: # 数学 # 高考 # 考生