您现在的位置是: 首页 > 教育政策 教育政策

高考数学向量题型归纳,高考向量专题

tamoadmin 2024-07-23 人已围观

简介1.高考立体几何题向量法的法向量的求法是什么2.高考数学向量较难题3.高考对于“空间向量”这一内容是怎样要求的?4.高考如何用向量法证明平行,垂直?5.高考数学向量的题目 如图6.高考数学选择题向量 几 何7.2017年高考数学平面向量必考知识点设公共点为5个,由于圆与直线的交点最多为2个,因此,此圆与三条边都有交点,而与三条边都有公共点的最小的圆是其内切圆,此三角形的内切圆直径是2,因此要当圆直

1.高考立体几何题向量法的法向量的求法是什么

2.高考数学向量较难题

3.高考对于“空间向量”这一内容是怎样要求的?

4.高考如何用向量法证明平行,垂直?

5.高考数学向量的题目 如图

6.高考数学选择题向量 几 何

7.2017年高考数学平面向量必考知识点

高考数学向量题型归纳,高考向量专题

设公共点为5个,由于圆与直线的交点最多为2个,因此,此圆与三条边都有交点,而与三条边都有公共点的最小的圆是其内切圆,此三角形的内切圆直径是2,因此要当圆直径大于2时才能大于4个公共点

------

是的

高考立体几何题向量法的法向量的求法是什么

根据题意知a与b是两个模为2夹角为π/3的两个向量,以△ABC的边AB表示a,AC表示b,

以AB的中点为坐标原点,AB所在直线为x轴,建立坐标系,则A(-1,0),B(1,0),C(0,根号3),所以a=(2,0),b=(1,根号3),设c=(x,y)

把向量坐标代人所给式子:c(a-2c+2b)=2中,化简得:(x-1)?+(y-根号3/2)?=3/4

而所求|a-c|=|(2-x,-y)|=根号(x-2)?+y?,它表示圆上的点与(2,0)的距离。

算出圆心与点(2,0)的距离为根号7/2

所以M=根号7-根号3/2,N=根号7/2-根号3/2

所以M-N=根号3

选B

高考数学向量较难题

设法向量为n=(x,y,z),然后利用这个向量与目标平面内的两条直线上的向量(方向向量)垂直,每一个垂直可以获得一个关于x,y,z的方程,这样你就获得了两个方程组成的方程组,这个方程组有无数组解。

事实上,平面的法向量是不确定的,就其方向来说,也有两大类,再加上模不确定),那么这些,你可以由上面的方程组里,目测一下,哪个量的绝对值较小,便取这个量为1(当然2等等也可以,这样就可以确定出所有的坐标了。

如:得到2x+3y-z=0,x-2y=0这样的方程组后,可以发现x是y的两倍,便设y=1,这样x=2,则z=9,于是便可取法向量n=(2,1,9),事实上,所有与这个向量共线的向量均为法向量,如(1,1/2,9/2)等。

法向量:

法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。

如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。

垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。

高考对于“空间向量”这一内容是怎样要求的?

设向量AB=a,AD=b,四边形ABCD是平行四边形,

∴向量AC=a+b,3|a|=2|b|,

∴OA=μ(AB+2AC)=μ(3a+2b),

在AD上截取=AB,设BG的中点为M,则

AM=(1/2)(a+2b/3),

OA=(3μ/2)AM,

设AB、CD的中点分别是E,F,

由OA+OB=λ(OC+OD)得OE=λOF,

∴O是直线AM与EF的交点M。

∴λ=1/2.

高考如何用向量法证明平行,垂直?

自2000年至2002年,文科、理科高考试题(新课程卷)中有关“空间向量”的试题内容、要求、形式和得分都是一致的。为了鼓励和支持课程、教材的改革,试卷中用一道解答题来考查“空间向量”。这道解答题是试卷中某一道解答题(甲)、(乙)两题中的(甲)题。在题号后明确指出:考生在(甲)、(乙)两题中选一题作答,如果两题都答,只以(甲)计分。对比2000年至2002年的(甲)、(乙)两题,(甲)题都可以用“空间向量”来解决;(乙)题一般是用传统方法来解决,难度稍大,耗时增多。

2000年理科、文科试卷第18题的(甲)题(本题满分12分)是:如图1,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点。

(图1)

(1)求N的长;

(2)求cos〈A1,B1〉的值;

(3)求证A1B⊥C1M。

解第(1)小题,可如下图2建立空间直角坐标系O-xyz。计算得|N|=。

(本小题2分)。

(图2)

再解第(2)小题,cos〈BA1,CB1〉=11030。

(本小题7分)。

第(3)小题证略。

(本小题3分)。

2001年理科、文科试卷第20题的(甲)题(本题满图3分12分)是:如图3,以正四棱锥V-ABCD底面中心O为坐标原点建立空间直角坐标系O-xyz,其中Ox∥BC,Oy∥AB。E为VC中点,正四棱锥底面边长为2a,高为h。

(图3)

(1)求cos〈E,E〉;

(2)记面BCV为α,面DCV为β,若BED是二面角α-VC-β的平面角,求∠BED的值。

解第(1)小题,cos〈E,E〉=-6a2+h2/10a2+h2。

(本小题6分)。

解第(2)小题,∠BED=π-arccos1/3。

(本小题6分)。

2002年理科试卷第18题(文科试卷第19题)的图4(甲)题(本题满分12分)是:如图4,正三棱柱ABC-A1B1C1的底面边长为a,侧棱长为a。

(图4)

(1)建立适当的坐标系,并写出点A、B、A1、C1的坐标;

(2)求AC1与侧面ABB1A1所成的角。

解第(1)小题,可如下图5建立空间直角坐标系图5O-xyz,得

(图5)

A(0,0,0),B(0,a,0),

A1(0,0,a),C1(-/2a,12a,a)(本小题4分)。

解第(2)小题,在图5中,取A1B1的中点M,有M(0,1/2a,a)。连结AM、MC1,可证AC1与AM所成的角就是AC1与侧面ABB1A1所成的角。

计算得cos〈C1,M〉=/2。(本小题8分)。

由上面三道试题可见,解题的关键都在于建立空间坐标系,从而把立体几何的计算与证明问题代数化。坐标系建立得适当,可以便于计算,从而也使证明简捷,充分体现出向量工具的优越性。三年里这类试题的难度都属于中等,比做同一解答题的(乙)题“优惠”一些。积极支持课程、教材改革的一线教研员、教师都已经对这些特点表示关注,试用“第二册(下B)”教科书的省、市和学校越来越多。

有鉴于此,在2003年高考新课程卷的理科、文科试题中,为了将空间向量更自然地视为解决立体几何问题的一种有效的工具,不再用(甲)(乙)两道试题的形式,而是与其他解答题类似,根据一种模型设计出难度不同的两道题目,分别放在理、文两份试卷中。这两道题目既可用传统方法解决,也可用空间向量解决,但使用后者明显有思路清晰易找的优点。请读者查阅2003年新课程卷的数学试题并加以比较。

以上笔者简单地介绍了空间向量在我国高中数学课程发展中的定位及与目前高考(新课程版)的关联。可以看出,只要有条件将这一工具教会学生使用,对他们学习高中数学和参加高考都是有好处的。

不仅如此,学习了平面向量和空间向量的学生,到大学理工科专业学习空间解析几何、线性空间、向量分析、微分几何,以及张量分析等,都会打下一个基础。所以在高中数学课程中安排空间向量内容的前景是十分光明的。

高考数学向量的题目 如图

前提条件:必须适合建立空间坐标系的题目

1、证明线面平行,只要证明这条线所在的向量和这个面的法向量垂直就行

2、证明面面平行,只要证明其中一个面的两条相交直线所在的向量和另一个面的法向量垂直就行

3、证明线面垂直,只要证明这条直线所在的向量和这个面的两条相交直线所在的向量垂直就行

4、证明面面垂直,只要证明其中一个面的法向量和另一个面的法向量垂直就行

如果面的法向量找不到,可以先设,通过方程组,解出法向量。如设法向量m=(x1,y1,1),其中竖坐标为1.

高考数学选择题向量 几 何

s=0.5*/AC/*/BD/,AC/=根号下((6+x)2+(y+1)2),/BD/=根号下((x-2)2+(y-3)2),画个图,四边形对角线互相垂直,以一条对角线为边,分为两个三角形面积之和

2017年高考数学平面向量必考知识点

如图,设D为BC的中点

向量P0C*向量P0B=1/4[(向量P0B+P0C)^2-(P0B-P0C)^2]

?=1/4[(2P0D)^2-(2BD)^2]

?=P0D^2-BD^2

同理,向量PC*向量PB=PD^2-BD^2

又因为向量PC*向量PB》向量P0C*向量P0B

即 ?PD^2-BD^2》P0D^2-BD^2

即 PD》P0D

又因为PD与AB垂直时达最小

即P0D垂直于AB

又因为△P0DB相似△ABC

? 有AB/DB=2DB/P0B

?DB=根号3

在△PoDB中,DP0^2=(根号3)^2-1^2

? 解得,DP0=根号2

又h/DP0=CB/DB

解得h=2根号2,

即三角形的高为2根号2

 平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。以下是我为您整理的关于2017年高考数学平面向量必考知识点的相关资料,希望对您有所帮助。

 高考数学必考知识点平面向量概念:

 (1)向量:既有大小又有方向的量。向量不能比较大小,但向量的模可以比较大小。

 (2)零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行。

 (3)单位向量:模为1个单位长度的向量

 (4)平行向量:方向相同或相反的非零向量

 (5)相等向量:长度相等且方向相同的向量

 高考数学必考知识点平面向量数量积解析

 1、平面向量数量积:已知两个非零向量a、b,那么|a||b|cos?(?是a与b的夹角)叫做a与b的数量积或内积,记作a?b。零向量与任意向量的数量积为0。数量积a?b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos?的乘积。

 两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a?b=x1?x2+y1?y2

 2、平面向量数量积具有以下性质:

 1、a?a=|a|2?0

 2、a?b=b?a

 3、k(a?b)=(ka)b=a(kb)

 4、a?(b+c)=a?b+a?c

 5、a?b=0<=>a?b

 6、a=kb<=>a//b

 7、e1?e2=|e1||e2|cos?

 高考数学必考知识点平面向量加法解析

 已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC,即有:AB+BC=AC。

 注:向量的加法满足所有的加法运算定律,如:交换律、结合律。

 高考数学必考知识点平面向量减法解析

 1、AB-AC=CB,这种计算法则叫做向量减法的三角形法则,简记为:共起点、指被减。

 -(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

 平面向量公式汇总

 1、定点

 定点公式(向量P1P=?向量PP2)

 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 ?,使 向量P1P=?向量PP2,?叫做点P分有向线段P1P2所成的比。

 若P1(x1,y1),P2(x2,y2),P(x,y),则有

 OP=(OP1+?OP2)(1+?);(定点向量公式)

 x=(x1+?x2)/(1+?),

 y=(y1+?y2)/(1+?)。(定点坐标公式)

 我们把上面的式子叫做有向线段P1P2的定点公式

 2、三点共线定理

 若OC=?OA +?OB ,且?+?=1 ,则A、B、C三点共线

 三角形重心判断式

 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心

 [编辑本段]向量共线的重要条件

 若b?0,则a//b的重要条件是存在唯一实数?,使a=?b。

 a//b的重要条件是 xy'-x'y=0。

 零向量0平行于任何向量。

 [编辑本段]向量垂直的充要条件

 a?b的充要条件是 a?b=0。

 a?b的充要条件是 xx'+yy'=0。

 零向量0垂直于任何向量.

 设a=(x,y),b=(x',y')。

 3、向量的加法

 向量的加法满足平行四边形法则和三角形法则。

 AB+BC=AC。

 a+b=(x+x',y+y')。

 a+0=0+a=a。

 向量加法的运算律:

 交换律:a+b=b+a;

 结合律:(a+b)+c=a+(b+c)。

 4、向量的减法

 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

 AB-AC=CB. 即?共同起点,指向被减?

 a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

 5、数乘向量

 实数?和向量a的乘积是一个向量,记作?a,且∣?a∣=∣?∣?∣a∣。

 当?>0时,?a与a同方向;

 当?<0时,?a与a反方向;

 当?=0时,?a=0,方向任意。

 当a=0时,对于任意实数?,都有?a=0。

 注:按定义知,如果?a=0,那么?=0或a=0。

 实数?叫做向量a的系数,乘数向量?a的几何意义就是将表示向量a的有向线段伸长或压缩。

 当∣?∣>1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上伸长为原来的∣?∣倍;

 当∣?∣<1时,表示向量a的有向线段在原方向(?>0)或反方向(?<0)上缩短为原来的∣?∣倍。

 数与向量的乘法满足下面的运算律

 结合律:(?a)?b=?(a?b)=(a?b)。

 向量对于数的分配律(第一分配律):(?+?)a=?a+?a.

 数对于向量的分配律(第二分配律):?(a+b)=?a+?b.

 数乘向量的消去律:① 如果实数?0且?a=?b,那么a=b。② 如果a?0且?a=?a,那么?=?。

 6、向量的的数量积

 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0?〈a,b〉?

 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

 向量的数量积的坐标表示:a?b=x?x'+y?y'。

 向量的数量积的运算律

 a?b=b?a(交换律);

 (?a)?b=?(a?b)(关于数乘法的结合律);

 (a+b)?c=a?c+b?c(分配律);

 向量的数量积的性质

 a?a=|a|的平方。

 a?b 〈=〉a?b=0。

 |a?b|?|a|?|b|。

 7、向量的数量积与实数运算的主要不同点

 (1)向量的数量积不满足结合律,即:(a?b)?c?a?(b?c);例如:(a?b)^2?a^2?b^2。

 (2)向量的数量积不满足消去律,即:由 a?b=a?c (a?0),推不出 b=c。

 (3)|a?b|?|a|?|b|

 (4)由 |a|=|b| ,推不出 a=b或a=-b。

 8、向量的向量积

 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a?b。若a、b不共线,则a?b的模是:∣a?b∣=|a|?|b|?sin〈a,b〉;a?b的方向是:垂直于a和b,且a、b和a?b按这个次序构成右手系。若a、b共线,则a?b=0。

 (1)向量的向量积性质:

 ∣a?b∣是以a和b为边的平行四边形面积。

 a?a=0。

 a‖b〈=〉a?b=0。

 (2)向量的向量积运算律

 a?b=-b?a;

 (?a)?b=?(a?b)=a?(?b);

 (a+b)?c=a?c+b?c.

 注:向量没有除法,?向量AB/向量CD?是没有意义的。

 (3)向量的三角形不等式

 ∣∣a∣-∣b∣∣?∣a+b∣?∣a∣+∣b∣;

 ① 当且仅当a、b反向时,左边取等号;

 ② 当且仅当a、b同向时,右边取等号。

 ∣∣a∣-∣b∣∣?∣a-b∣?∣a∣+∣b∣。

 ① 当且仅当a、b同向时,左边取等号;

文章标签: # 向量 # 10px # 0px