您现在的位置是: 首页 > 教育政策 教育政策
高考物理学史的题_高考物理学史题目
tamoadmin 2024-07-23 人已围观
简介1.高中物理牛人进2.高考物理交变电流公式归纳高考物理知识点Ⅰ、复习要点一、高考物理知识点体系现行高中物理教材主要分:力、热、电、光、原子五个部分.综合复习中,既可以根据各部分的内容特点,分别整理出各自的体系或主要线索,也可以不受传统的五部分限制,重新归纳、整理。例如,高考物理知识点总结可概括为四大单元(物理实验与物理学史单元除外)。(一)力和运动物体的运动变化(包括带电粒子在电场、磁场中的运动)
1.高中物理牛人进
2.高考物理交变电流公式归纳
高考物理知识点Ⅰ、复习要点
一、高考物理知识点体系
现行高中物理教材主要分:力、热、电、光、原子五个部分.综合复习中,既可以根据各部分的内容特点,分别整理出各自的体系或主要线索,也可以不受传统的五部分限制,重新归纳、整理。例如,高考物理知识点总结可概括为四大单元(物理实验与物理学史单元除外)。
(一)力和运动
物体的运动变化(包括带电粒子在电场、磁场中的运动)与受力作用有关。其中力的种类计有:重力(包括万有引力)、弹力、摩擦力、浮力、电场力、磁场力(分安培力和洛舍兹力)以及分子力(包括表面张力),核力等。每种力有不同的产生原因及其特征。物体的运动形式又可分为:平衡(包括静止、匀速直线运动、匀速转动)、匀变速运动(包括匀变速直线运动、平抛、斜抛)、匀速圆周运动、振动、波动等。每一种运动形式有不同的物理条件及基本规律(或特征)。力和运动的关系以五条重要规律为纽带联系起来。
(二)功和能
1.功重力功、弹力功、摩擦力功、浮力功、电场力功、磁场力功、分子力功、核力功。
2.能注意不同形式的能及能的转换与守恒。
3.功能关系做功的过程就是能从一种形式转化为另一种形式的过程。功是能的转化的量度。
(三)物质结构
(四)应用技术的基础知识现行高中物理有关应用技术的基础知识有:声现象(乐音、噪声、共鸣等多、静电技术(静电平衡、静电屏蔽、电容储电等)、交流电应用(交流电产生、特征、规律、简单交流电路、三相交流电及其连接、变压器,远距离送电等)、无线电技术初步(电磁振荡产生、调制、发送、电谐振、检波、放大、整流等)、光路控制与成像(光的反射与折射定律、基本光学元件特性及常用光学仪器)、光谱与光谱分析、放射性及同位素、核反应堆等。经过这样的归纳、整理,全部高中物理知识可浓缩在几张小卡片纸上,便于领会和应用。 Ⅱ、归纳思维方式
分析问题最基本的思维方式有两种:综合法和分析法.
综合法是从已知量着手,根据题中给定的物理状态或物理过程。“顺流而下”,直到把待求量跟已知量的关系全部找出来为止。
分析法则“逆流上朔”。从题中所要求解的未知量开始。首先找出直接回答题目所求的定律或公式。在这些关系式电。除了待求的未知量外,还会包含着某些过渡性的未知量。然后再根据这些过渡性来知量与题中已知条件之间的关系,引用新的关系式,逐步上朔,直到把所有的未知量都能用已知量表示出来为止。有些问题(如静力平衡问题等),它的物理过程并不能很明确地分成几个互相衔接的阶段或者各个过程中的未知量互相交织,互有牵连,此时常可以不分先后。只根据问题所描述的物理状态(或物理过程)的相互联系。列出用某个状态(或过程)有关的独立方程式,联立求解。原则上,任何一个题目都可以从这两种思维方式着手求解。值得注意的是,解决具体问题时,不必拘泥于刻板的程式,而是应该侧重于对问用中所描述的状态(或过程)的分析推理,着力找出解题的关键所在,并以此为突破口下手.同时应联合运用其他的思维技巧,如等效变换,对称性、反证法、设法、类比、逻辑推理等。
Ⅲ、综合数学技巧
运用数学技巧,包含着极其丰富的内容。总体上要求能运用数学工具和语言,表述物理概念和规律;对物理问题进行推理、论证和变换;处理实验数据;导出球验证物理规律;进行准确的演算等。就解决某帧体的物理问回而言,要求能灵活地运用多种数学工具(如方程、此例、函数、图象、不等式、指数和对数、数列、极限、极值、数学归纳、三角、平面解析几何等)。综合复习中可全面概述其在物理中的典型应用,并侧重于比例、函数及其图象(包括识图、用图、作图)、以及运用数学递推方法从特解导出通解等。必须注意,运用数学仅是研究物理问题的一种有力的工具,侧重点还是应放在对问题中物理内容的分析上.对大多数能从物理本质上着手解决的问题,一般不必要求作严格的数学论证。
Ⅳ、检查知识缺陷
整理体系、抓住主线索后,还需做好检查知识缺陷的工作。应注意自觉看书,尤其不能疏忽那些应用性强、包含(或隐含)着物理内容的“知识角落”。如对某些实验的装置、原理的理解;某些自然现象的解释;物理原理在生产技术上的应用以及与高中物理有关的科技新动态和重要的物理学史实等.不少学生由于缺乏良好的学习习惯戏迷恋于复习资料中,往往会在这些方面失分。如以往考试中解释太阳光谱中暗线的形成);分光镜的结构;低压汞蒸汽光谱;三相变压器及超导现象;直线加速器;日光灯接法;电磁感应现象的发现者等。在综合复习中应予以足够的重视。 热学辅导
热学包括分子动理论、热和功、气体的性质几部分。
一、重要概念和规律
1.分子动理论
物质是由大量分子组成的;分子永不停息的做无规则运动;分子间存在相互作用的引力和斥力。说明:(1)阿伏伽德罗常量NA=6.02X1023摩-1。它是联系宏观量和微观量的桥梁,有很重要的意义;(2)布朗运动是指悬浮在液体(或气体)里的固体微粒的无规则运动,不是分子本身的运动。它是由于液体(或气体)分子无规则运动对固体微粒碰撞的不均匀所造成的。因此它间接反映了液体(或气体)分子的无序运动。
2.温度
温度是物体分子热运动的平均动能的标志。它是大量分子热运动的平均效果的反映,具有统计的意义,对个别分子而言,温度是没有意义的。任何物体,当它们的温度相同时,物体内分子的平均动能都相同。由于不同物体的分子质量不同,因而温度相同时不同物体分子的平均速度并不一定相同。
3.内能
定义物体里所有分子的动能和势能的总和。决定因素:物质数量(m).温度(T)、体积(V)。改变方式做功——通过宏观机械运动实现机械能与内能的转换;热传递——通过微观的分子运动实现物体与物体间或同一物体各部分间内能的转移。这两种方式对改变内能是等效的。定量关系△E=W+Q(热力学第一定律)。
4.能量守恒定律
能量既不会凭空产生,也不会凭空消旯它产能从一种形式转化为别的形式,或者从一个物体转移到别的物体。必须注意:不消耗任何能量,不断对外做功的机器(永动机)是不可能的。利用热机,要把从燃料的化学能转化成的内能,全部转化为机械能也是不可能的。
5.理想气体状态参量
理想气体始终遵循三个实验定律(玻意耳定律、查理定律、盖?吕萨克定律)的气体。描述一定质量理想气体在平衡态的状态参量为:温度气体分子平均动能的标志。体积气体分子所占据的空间。许多情况下等于容器的容积。压强大量气体分子无规则运动碰撞器壁所产生的。其大小等于单位时间内、器壁单位面积上所受气体分子碰撞的总冲量。内能气体分子无规则运动的动能.理想气体的内能仅与温度有关。
6.一定质量理想气体的实验定律
玻意耳定律:PV=恒量;查理定律:P/T=恒量;盖?吕萨克定律:V/T=恒量。
7.一定质量理想气体状态方程
PV/T=恒量
说明(1)一定质量理想气体的某个状态,对应于P一V(或P-T、V-T)图上的一个点,从一个状态变化到另一个状态,相当于从图上一个点过渡到另一个点,可以有许多种不同的方法。如从状态A变化到B,可以经过的过程许多不同的过程。为推导状态方程,可结合图象选用任意两个等值过程较为方便。(2)当气体质量发生变化或互有迁移(混合)时,可用把变质量问题转化为定质量问题,利用密度公式、气态方程分态式等方法求解。
二、重要研究方法
1、微观统计平均
热学的研究对象是由大量分子组成的.其宏观特性都是大量分子集体行为的反映。不可能同时也无必要像力学中那样根据每个物体(每个分子)的受力情况,写出运动方程。热学中的状态参量和各种现象具有统计平均的意义。因此,当大量分子处于无序运动状态或作无序排列时,所表现出来的宏观特性——如气体分子对器壁的压强、非晶体的物理属性等都显示出均匀性。当大量分子作有序排列时,必显示出不均匀性,如晶体的各自异性等。研究热学现象时,必须充分领会这种统计平均观点。
2.物理图象
气体性质部分对图象的应用既是一特点,也是一个重要的方法。利用图象常可使物理过程得到直观、形象的反映,往往使对问题的求解更为简便。对物理图象的要求,不仅是识图、用图,而且还应变图一即作图象变换。如图P-V图变换成p-T图或V-T图等。
3.能的转化和守恒
各种不同形式的能可以互相转化,在转化过程中总量保持不变。这是自然界中的一条重要规律。也是指导我们分析研究各种物理现象时的一种极为重要的思想方法。在本讲中各部分都有广泛的渗透,应牢固把握。
三、基本解题思路
热学部分的习题主要集中在热功转换和气体性质两部分,基本解题思路可概括为四句话:
1.选取研究对象.它可以是由两个或几个物体组成的系统或全部气体和某一部分气体。(状态变化时质量必须一定。)
2.确定状态参量.对功热转换问题,即找出相互作用前后的状态量,对气体即找出状态变化前后的p、V、T数值或表达式。
3、认识变化过程.除题设条件已指明外,常需通过究对象跟周围环境的相互关系中确定。
4.列出相关方程. 光学辅导
光学包括两大部分内容:几何光学和物理光学.几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科.
一、重要概念和规律
(一)几何光学基本概念和规律
1、基本规律
光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线——表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速——光传播的速度。光在真空中速度最大。恒为C=3×108m/s。丹麦天文学家罗默第一次利用天体间的大距离测出了光速。法国人裴索第一次在地面上用旋转齿轮法测出了光这。实像——光源发出的光线经光学器件后,由实际光线形成的.虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。本影——光直线传播时,物体后完全照射不到光的暗区.半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.
2.基本规律
(1)光的直线传播规律先在同一种均匀介质中沿直线传播。小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。
(4)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射
角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
(5)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.
3.常用光学器件及其光学特性
(1)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
(2)球面镜凹面镜有会聚光的作用,凸面镜有发散光的作用.
(3)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。隔着棱镜看到物体的像向项角偏移。棱镜的色散作用复色光通过三棱镜被分解成单色光的现象。
(4)透镜在光疏介质的环境中放置有光密介质的透镜时,凸透镜对光线有会聚作用,凹透镜对光线有发散作用.透镜成像作图利用三条特殊光线。成像规律1/u+1/v=1/f。线放大率m=像长/物长=|v|/u。说明①成像公式的符号法则——凸透镜焦距f取正,凹透镜焦距f取负;实像像距v取正,虚像像距v取负。②线放大率与焦距和物距有关.
(5)平行透明板光线经平行透明板时发生平行移动(侧移).侧移的大小与入射角、透明板厚度、折射率有关。
4.简单光学仪器的成像原理和眼睛
(1)放大镜是凸透镜成像在。u<f时的应用。通过放大饼在物方同地看到正立虚像。
(2)照相机是凸透镜成像在u>2f时的应用.得到的是倒立缩小施实像。
(3)幻灯机是凸透镜成像在f<u<2f时的应用。得到的是倒立放大的实像.
(4)显微镜由短焦距的凸透镜作物镜,长焦距的透镜作目镜所组成。物体位于物镜焦点外很靠近焦点处,经物镜成实像于目镜焦点内很靠近焦点处。再经物镜在同侧形成一放大虚像(通常位于明视距离处)。
(5)望远镜由长焦距的凸透镜作物镜,辕焦距的〕透镜作目镜所组成。极远处至物镜的光可看成平行光,经物镜成中间像(倒立、缩小、实像)于物镜焦点外很靠近焦点处,恰位于目镜焦点内,再经目镜成虚像于极远处(或明视距离处)。
(6)眼睛等效于一变焦距照相机,正常人明视距约25厘米。明视距离小子25厘米的近视眼患者需配戴凹透镜做镜片的眼镜;明视距离大于25厘米的远视25者需配戴凸透镜做镜片的眼镜。
(二)物理光学——人类对光本性的认识发展过程
(1)微粒说(牛顿)基本观点认为光像一群弹性小球的微粒。实验基础光的直线传播、光的反射现象。困难问题无法解释两种媒质界面同时发生的反射、折射现象以及光的独立传播规律等。
(2)波动说(惠更斯)基本观点认为光是某种振动激起的波(机械波)。实验基础光的干涉和衍射现象。
①个的干涉现象——杨氏双缝干涉实验
条件两束光频率相同、相差恒定。装置(略)。现象出现中央明条,两边等距分布的明暗相间条纹。解释屏上某处到双孔(双缝)的路程差是波长的整数倍(半个波长的偶数倍)时,两波同相叠加,振动加强,产生明条;两波反相叠加,振动相消,产生暗条。应用检查平面、测量厚度、增强光学镜头透射光强度(增透膜).
②光的衍射现象——单缝衍射(或圆孔衍射)
条件缝宽(或孔径)可与波长相比拟。装置(略)。现象出现中央最亮最宽的明条,两边不等距发表的明暗条纹(或明暗乡间的圆环)。困难问题难以解释光的直进、寻找不到传播介质。
(3)电磁说(麦克斯韦)基本观点认为光是一种电磁波。实验基础赫兹实验(证明电磁波具有跟光同样的性质和波速)。各种电磁波的产生机理无线电波自由电子的运动;红外线、可见光、紫外线原子外层电子受激发;x射线原子内层电子受激发;γ射线原子核受激发。可见光的光谱发射光谱——连续光谱、明线光谱;吸收光谱(特征光谱。困难问题无法解释光电效应现象。
(4)光子说(爱因斯坦)基本观点认为光由一份一份不连续的光子组成每份光子的能量E=hν。实验基础光电效应现象。装置(略)。现象①入射光照到光电子发射几乎是瞬时的;②入射光频率必须大于光阴极金属的极限频率ν。;
③当ν>v。时,光电流强度与入射光强度成正比;④光电子的最大初动能与入射光强无关,只随着人射光灯中的增大而增大。解释①光子能量可以被电子全部吸收.不需能量积累过程;②表面电子克服金属原子核引力逸出至少需做功(逸出功)hν。;③入射光强。单位时间内入射光子多,产生光电子多;④入射光子能量只与其频率有关,入射至金属表,除用于逸出功外。其余转化为光电子初动能。困难问题无法解释光的波动性。
(5)光的波粒二象性基本观点认为光是一种具有电磁本性的物质,既有波动性。又有粒子性。大量光子的运动规律显示波动性,个别光子的行为显示粒子性。实验基础微弱光线的干涉,X射线衍射.
二、重要研究方法
1.作图锋几何光学离不开光路图。利用作图法可以直观地反映光线的传播,方便地确定像的位置、大小、倒正、虚实以及成像区域或观察范围等.把它与公式法结合起来,可以互相补充、互相验证。
2.光路追踪法用作图法研究光的传播和成像问题时,抓住物点上发出的某条光线为研究对象。不断追踪下去的方法.尤其适合于研究组合光具成多重保的情况。
3.光路可逆法在几何光学中,一所有的光路都是可逆的,利用光路可逆原理在作图和计算上往在都会带来方便。 实验辅导
物理学是一门以实验为基础的科学。近年来对学生物理知识的各种全面测试中(如高考等)也非常重视对学生实验能力的考查。因此,物理实验的复习是整个总复习中不可缺少的一个重要组成部分.
一、实验的基本类型和要求
中学物理学生实验大体可以分为四范其要求如下:
1.基本仪器的使用除了初中已接触过的常用仪器(如天平秤、弹簧秤、压强计、气压计、温度计、安培计、伏特计等)外.高中又学习了打点计时器、螺旋测微器、游标卡尺、万用电表等,要求了解仪器的基本结构,熟悉各主要部件的名称,懂得工作(测量)原理,掌握合理的操作方法,会正确读数,明确使用注意事项等.
2.基本物理量的测量初中物理中巴学过长度、时间、质量、力、温度、电流强度、电压等物理量的测量,高中物理进一步学习了对微小长度和极短时间、加速度(包括g)、速度、电阻和电阻率、电动势、折射率、焦距等物理量的测量。要求明确被测物理量的含义,懂得具体的测量原理。掌握正确的实验方法(包括了解实验仪器、器材的规格性能、会安装和调试实验装置、能选择合理的实验步骤,正确进行数据测量以及能分析和排除实验中出现的常见故障等),妥善处理实验数据并得出结果。
3.验证物理规律计有验证共点力合成的平行四边形定则、有固定转动轴物体的平衡条件、牛顿第二定律、机械能守恒定律、玻意耳定律等。其要求与物理量的测量相同,着重注意分析实验误差,并能有效地取相应措施尽量减少实验误差,提高准确度。
4.观察、研究物理现象,组装仪器如研究平抛运动、弹性碰撞、描绘等势线、研究电磁感应现象、变压器的作用、观察光的衍射现象。把电流计改装为伏特计等.其中,对观察型实验,只要求会正确使用仪器,显示出(或观察到)物理现象,并通过直觉的观察定性了解影响该现象的有关因素。对研究型实验(包括组装仪器),要求不仅能使用仪器,掌握正确的实验研究方法,把有关现象的物理内客反映出来;或把有关参数测量出来,还能够通过具体的测量作进一步的定量研一究或实验设计。
二、实验的设计思想
在中学物理实验中涉及的主要设计思想为:
1.垒积放大法把某些物理量(有时往在是难以直接测量的测量的微小量)累积后测量,或把它们放大后显示出来的一种方法。如通过若干次全振动的时间测出单摆的振动周期;把员杨螺杆的微小进退.通过周长较大的可动到度盘显示出来(螺旋测微器)等。
2.平衡法根据物理系统内普遍存在的对立的、矛盾的双方使系统偏离平衡的物理因素,列出对应的平衡方程式,从而找出影响平衡的一种方法如用天平测质量、验证有固定转动因乎衔条件、验证玻意耳定律等。
3.控制法在多因素的物理现象中,可以先控制某些量不变,依次研究某一个因素对现象产生影响的一种方法。如牛顿第二定律实验。可以先保持质量一定,研究加速度与力的关系等。
4.转换法用某些容易直接测量,(或显示)的量(或现象)代替不容易直接测(或显示)的量(或现象)。或者根据研究对象在一定条件下可以有相同的效果作间接的观察、测量。如把流逝的时间转换成振针周期性的振动;把对电流、电压、电阻的测量转换成对指针偏角的测量;用从等高处抛出的两球的水平位移代替它们的速度等。
5.留迹法把瞬息即逝的(位置、轨迹、图象等)记录下来的一种方法。如通过纸带上打出的小点记录小车的位置Z用描述法画出平抛物体的运动轨迹;用示波器显示变化的波形等。
三、实验验数据处理
数据处理是对原始实验记录的科学加工。通过数据处理,往往可以从一堆表面上难以觉察的、似乎毫无联系的数据中找出内在的规律,在中学物现中只要求掌握数据处理的最简单的方法.
1.列表法把被测物理量分类列表表示出来。通常需说明记录表的要求(或称为标题)、主要内容等。表中对各物理量的排列月惯上先原始记录数据,后计算果。列表法可大体反映某些因素对结果的影响效果或变化趋势,常用作其他数据处理方法的一种手段。
2.算术平均值法把待测物理量的若干次测且值相加后除以测量次数。必须注意,求取算术平均值时,应按原测量仪器的准确度决定保留有效数字的位数。通常可先计算比直接测量值多一位,然后再四会五入。
3.图象法把实验测得的量按自变量和应变量的函数关系在坐标平面上用图象直观地显示出来.根据实验数据在坐标纸上画出图象时。最基本的要求是:
(1)两坐标轴要选取恰当的分度
(2)要有足够多的描点数目
(3)画出的图象应尽是穿过较多的描点在图象呈曲线的情况下,可先根据大多数描点的分布位置(个别特殊位置的奇异点可舍去),画出穿过尽可能多的点的草图,然后连成光滑的曲线,避免画成拆线形状。
四、实验误差分析
测量值与待测量真实值之差,称为测量误差。主要来源于仪器(如性能和结构的不完善)、环境(如温度、湿度、外磁场的影响等)、实验方法(如实验方法粗糙、实验理论不完善等)、人为因素(如观测者个人的生理、心理习惯、不同观察者的反应快慢不一等)四方面。在中学物理中只要求定性分析实验误差的主要原因,了解绝对误差和相对误差的概念。
高中物理牛人进
物理学史研究人类对自然界各种物理现象的认识史,研究物理学发生和发展的基本规律,研究物理学概念和思想发展和变革的过程,研究物理学是怎样成为一门独立学科,怎样不断开拓新领域,怎样产生新的飞跃,它的各个分支怎样互相渗透,怎样综合又怎样分化。 物理学史
物理学是一门基础科学,它向着物质世界的深度和广度进军,探索物质世界及其运动的规律。它像一座知识的宝塔,基础雄厚,力学、热学、电学、光学以至于相对论、量子力学、核物理和粒子物理学、凝聚态物理学和天体物理学,形成了一座宏伟的大厦。它又像一棵大树,根深叶茂,从基根长出树干,从树干长出茂密的枝杈,又结出累累果实。它还像滚滚大江,汹涌澎湃,一浪高过一浪。然而,通过这些比喻,仍不足以说明物理学是怎样的一门不断发展的科学,只有了解了物理学发展的历史,才能更深刻地认识物理学的宏伟壮观。 通过物理学史的学习,不但能增长见识,加深对物理学的理解,更重要的是可以从中得到教益,开阔眼界,从前人的经验中得到启示。 本书的第1版是在我们讲物理学史课程时所写讲义的基础上扩充而成的。课程原名物理学史专题讲座,是为清华大学本科生开设的选修课。之所以叫专题讲座,是因为在理工科大学没有那么多时间,也没有必要按部就班地进行系统地讲授。那样既乏味又费时间。有些课题,我们没有讲到,同学们如果有兴趣,可以自己找书看。我们认为,与其平铺直叙地罗列一大堆史实,不如抓住若干典型,进行个例剖析,讲得深透些。什么是个例剖析?我们指的是就某一个、某一项发现或某一位科学家的成就进行充分的揭示,说明其前因后果、来龙去脉,不仅说有什么,还要说为什么。例如,可以问一问:为什么会出现那样的?为什么会发生新的突破?为什么会造就伟大的人物?分析其成功的要素,总结其经验教训,提炼出可供大家共享的精神财富。所以我们选了十几个专题,每讲一个专题,分析一个或几个例子,于是就叫专题讲座。讲座开了几届之后,又感到选修课不宜过专,不能让学生花费过多的精力阅读原始文献,但是有必要保留专题讲座的精华,即保留从个例剖析得到的各种有益启示,这些启示并不是生硬灌输给学生,而是通过真实的历史、 物理学史
实际的资料、生动的情景把学生引入历史的氛围,让他们自己去体会,自己去获取应该得到的启示。于是这门选修课就改名为《物理学史的启示》。这门课一开就是十几年。1993年,经过多次试用和修改补充的讲义终于正式出版,取名为《物理学史》。我们的工作得到了校内外许多师生的鼓励和关怀,其中包括老一辈的物理学家的指点和勉励。最让我们感到荣幸的是,我国著名物理学家钱三强教授曾经多次给我们以具体的指导,并亲自为我们作序。详见:郭奕玲,沈慧君.怀念钱三强先生.现代物理知识,1994(1):41~44. 这些年来,《物理学史》一书被许多院校选为物理学史课程教材,也成了广大物理教师的参考书。这本书显示出了不少缺陷和错误,我们深感有加以修改和完善的必要。这次修改主要是针对如下几方面: (1) 加强20世纪物理学各个分支的论述,其中包括相对论、量子理论、粒子物理学、现代光学、凝聚态物理学和天体物理学。 (2) 充分利用资料。 (3) 必要的增补和修改。 众多的同行多年来为我们提供物理学史资料,其别是Melba Phillips正值本书截稿之际,惊悉岁的Melba Phillips已于2004年11月18日辞世,不胜怀念。教授。她和美国物理学会曾经给予我们多方面的帮助。Alan Franklin教授也是我们工作的积极支持者。我们对他们表示诚挚的感谢。我们还要感谢资料的版权所有者。由于是多年来从各种渠道收集到的,难以一一注明出处。
编辑本段目录
第一版序
前言
第1章力学的发展
1.1历史概述1 1.2天文学的新进展揭开了科学革命的序幕3 1.3惯性定律的建立10 1.4伽利略的落体研究13 1.5万有引力定律的发现21 1.6《自然哲学之数学原理》和牛顿的大综合27 1.7碰撞的研究29 1.8牛顿以后力学的发展33 1.9牛顿的绝对时空观和马赫的批判37
第2章热学的发展
2.1历史概述40 2.2热现象的早期研究40 2.3热力学第一定律的建立47 2.4卡诺和热机效率的研究59 2.5绝对温标的提出62 2.6热力学第二定律的建立64 2.7热力学第三定律的建立和低温物理学的发展68 2.8气体动理论的发展72 2.9统计物理学的创立81
第3章电磁学的发展
3.1历史概述90 3.2早期的磁学和电学研究90 3.3库仑定律的发现94 3.4动物电的研究和伏打电堆的发明102 3.5电流的磁效应105 3.6安培奠定电动力学基础110 3.7欧姆定律的发现111 3.8电磁感应的发现113 3.9电磁理论的两大学派118 3.10麦克斯韦电磁场理论的建立119 3.11赫兹发现电磁波实验126 3.12麦克斯韦电磁场理论的发展130
第4章经典光学的发展
4.1历史概述132 4.2反射定律和折射定律的建立133 4.3牛顿研究光的色散136 4.4光的微粒说和波动说140 4.5光速的测定146 4.6光谱的研究150 第5章实验新发现和现代物理学革命157
5.1历史概述
5.219/20世纪之交的三大实验发现158 5.3“以太漂移”的探索170 5.4热辐射的研究180 5.5经典物理学的“危机”186
第6章相对论的建立和发展
6.1历史背景188 6.2爱因斯坦创建狭义相对论的经过191 6.3狭义相对论理论体系的建立198 6.4狭义相对论的遭遇和实验检验203 6.5广义相对论的建立205 6.6广义相对论的实验验证212
第7章早期量子论和量子力学的准备
7.1历史概述221 7.2普朗克的能量子设221 7.3光电效应的研究224 7.4固体比热229 7.5原子模型的历史演变232 7.6α散射和卢瑟福有核原子模型237 7.7玻尔的定态跃迁原子模型和对应原理240 7.8索末菲和埃伦费斯特的贡献244 7.9爱因斯坦与波粒二象性250 7.10X射线本性之争252 7.11康普顿效应253
第8章量子力学的建立与发展
8.1历史概述258 8.2电子自旋概念和不相容原理的提出259 8.3德布罗意说261 8.4物质波理论的实验验证262 8.5矩阵力学的创立267 8.6波动力学的创立268 8.7波函数的物理诠释270 8.8不确定原理和互补原理的提出271 8.9关于量子力学完备性的争论272 8.10量子电动力学的发展276
第9章原子核物理学和粒子物理学的发展
9.1历史概述282 9.2放射性的研究282 9.3人工核反应的初次实现287 9.4探测仪器的改善289 9.5宇宙射线和正电子的发现292 9.6中子的发现294 9.7人工放射性的发现298 9.8重核裂变的发现298 9.9链式反应303 9.10原子核模型理论304 9.11加速器的发明与建造305 9.12β衰变的研究和中微子的发现310 9.13介子理论和μ子的发现312 9.14奇异粒子的研究313 9.15弱相互作用中宇称不守恒和CP破坏的发现314 9.16强子结构和夸克理论316 9.17量子色动力学的建立318 9.18弱电统一理论的提出319 9.19夸克模型的发展321
第10章凝聚态物理学简史
10.1历史概述324 10.2固体物理学的早期研究325 10.3固体物理学的理论基础327 10.4固体物理学的实验基础330 10.5晶体管的发明330 10.6半导体物理学和实验技术的蓬勃发展334 10.7超导电性的研究339 10.8超流动性的发现343 10.9量子霍尔效应与量子流体的研究348 10.10非晶态物理的发展354 10.11高压物理学的发展357 10.12软物质物理学的兴起359
第11章现代光学的兴起
11.1激光科学的孕育和准备360 11.2微波激射器的发明365 11.3激光器的设想和实现367 11.4激光技术的发展374 11.5全息术的发明和应用377 11.6激光光谱学380 11.7非线性光学382 11.8量子光学384 11.9量子信息光学386 11.10原子光学389
第12章天体物理学的发展
12.1天体物理学的兴起395 12.2匹克林谱系之谜396 12.3恒星演化理论的建立399 12.4类星体的发现401 12.5宇宙背景辐射的发现402 12.6脉冲星的发现405 12.7星际有机分子的发现408 12.8黑洞的研究409 12.9暗物质和暗能量的探索411
第13章诺贝尔物理学奖
13.1诺贝尔物理学奖的设立416 13.2诺贝尔物理学奖的分布统计418 13.3时代划分420 13.4分类综述422
第14章
实验和实验室在物理学发展中的地位和作用 14.1实验在物理学发展中的作用452 14.2实验室在物理学发展中的地位455 第15章单位、单位制与基本常数简史470 15.1基本单位的历史沿革470 15.2单位制的沿革476 15.3基本物理常数的测定与评定480 15.4物理学的新发现对基本常数的影响486 结束语488 附录物理学大事年表493
编辑本段经典物理学-力学的发展史
物理学是研究物质及其行为和运动的科学。它是最早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德以及其后苏格拉底的哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自于这些哲学传统,并在中世纪时由当时的哲学家菲洛彭洛斯、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。
力学的历史背景
力学是最原始的物理学分支之一,而最原始的力学则是静力学。静力学源于人类文明初期生产劳动中所使用的简单机械,如杠杆、滑轮、斜面等。古希腊人从大量的经验中了解到一些与静力学相关的基本概念和原理,如杠杆原理和阿基米德定律。但直至十六世纪后,资本主义的工业进步才真正开始为西方世界的自然科学研究创造物质条件,尤其于地理现时代航海业兴起,人类钻研观测天文学所花费的心力前所未有,其中以丹麦天文学家第谷·布拉赫和德国天文学家、数学家约翰内斯·开普勒为代表。对宇宙中天体的观测也成为了人类进一步研究力动的绝佳领域。1609和1619年,开普勒先后发现开普勒行星运动三大定律,总结了老师第谷毕生的观测数据。
伽利略的动力学
在十七世纪的欧洲,自然哲学家逐渐展开了一场针对中世纪经院哲学的进攻,他们持有的观点是,从力学和天文学研究抽象出的数学模型将适用于描述整个宇宙中的运动。被誉为“现代自然科学之父”的意大利(或按当时地理为托斯卡纳大公国)物理学家、数学家、天文学家伽利略·伽利莱就是这场转变中的****。伽利略所处的时代正值思想活跃的文艺复兴之后,在此之前列奥纳多·达芬奇所进行的物理实验、尼古拉斯·哥白尼的日心说以及弗朗西斯·培根提出的注重实验经验的科学方法论都是促使伽利略深入研究自然科学的重要因素,哥白尼的日心说更是直接推动了伽利略试图用数学对宇宙中天体的运动进行描述。伽利略意识到这种数学性描述的哲学价值,他注意到哥白尼对太阳、地球、月球和其他行星的运动所作的研究工作,并认为这些在当时看来相当激进的分析将有可能被用来证明经院哲学家们对自然界的描述与实际情形不符。伽利略进行了一系列力学实验阐述了他关于运动的一系列观点,包括借助斜面实验和自由落体实验批驳了亚里士多德认为落体速度和重量成正比的观点,还总结出了自由落体的距离与时间平方成正比的关系,以及著名的斜面理想实验来思考运动的问题。他在1632年出版的著作《关于托勒密和哥白尼两大世界体系的对话》中提到:“只要斜面延伸下去,球将无限地继续运动,而且不断加速,因为此乃运动着的重物的本质。”,这种思想被认为是惯性定律的前身。但真正的惯性概念则是由笛卡尔于1644年所完成,他明确地指出了“除非物体受到外因作用,否则将永远保持静止或运动状态”,而“所有的运动本质都是直线的”。 伽利略在天文学上最著名的贡献是于1609年改良了折射式望远镜,并借此发现了木星的四颗卫星、太阳黑子以及金星类似于月球的相。伽利略对自然科学的杰出贡献体现在他对力学实验的兴趣以及他用数学语言描述物体运动的方法,这为后世建立了一个基于实验研究的自然哲学传统。这个传统与培根的实验归纳的方法论一起,深刻影响了一批后世的自然科学家,包括意大利的埃万杰利斯塔·托里拆利、法国的马林·梅森和布莱兹·帕斯卡、荷兰的克里斯蒂安·惠更斯、英格兰的罗伯特·胡克和罗伯特·波义耳。
牛顿三大定律和万有引力定律?
艾萨克·牛顿 1687年,英格兰物理学家、数学家、天文学家、自然哲学家艾萨克·牛顿出版了《自然哲学的数学原理》一书,这部里程碑式的著作标志着经典力学体系的正式建立。牛顿在人类历史上首次用一组普适性的基础数学原理——牛顿三大运动定律和万有引力定律——来描述宇宙间所有物体的运动。牛顿放弃了物体的运动轨迹是自然本性的观点(例如开普勒认为行星运动轨道本性就是椭圆的),相反,他指出,任何现在可观测到的运动、以及任何未来将发生的运动,都能够通过它们已知的运动状态、物体质量和外加作用力并使用相应原理进行数学推导计算得出。 伽利略、笛卡尔的动力学研究(“地上的”力学),以及开普勒和法国天文学家布里阿德在天文学领域的研究(“天上的”力学)都影响着牛顿对自然科学的研究。(布里阿德曾特别指出从太阳发出到行星的作用力应当与距离成平方反比关系,虽然他本人并不认为这种力真的存在)。1673年惠更斯独立提出了圆周运动的离心力公式(牛顿在1665年曾用数学手段得到类似公式),这使得在当时科学家能够普遍从开普勒第三定律推导出平方反比律。罗伯特·胡克、爱德蒙·哈雷等人由此考虑了在平方反比力场中物体运动轨道的形状,1684年哈雷向牛顿请教了这个问题,牛顿随后在一篇9页的论文(后世普遍称作《论运动》)中做了解答。在这篇论文中牛顿讨论了在有心平方反比力场中物体的运动,并推导出了开普勒行星运动三定律。其后牛顿发表了他的第二篇论文《论物体的运动》,在这篇论文中他阐述了惯性定律,并详细讨论了引力与质量成正比、与距离平方成反比的性质以及引力在全宇宙中的普遍性。这些理论最终都汇总到牛顿在1687年出版的《原理》一书中,牛顿在书中列出了公理形式的三大运动定律和导出的六个推论(推论1、2描述了力的合成和分解、运动叠加原理;推论3、4描述了动量守恒定律;推论5、6描述了伽利略相对性原理)。由此,牛顿统一了“天上的”和“地上的”力学,建立了基于三大运动定律的力学体系。 牛顿的原理(不包括他的数学处理方法)引起了欧洲大陆哲学家们的争议,他们认为牛顿的理论对物体运动和引力缺乏一个形而上学的解释从而是不可接受的。从1700年左右开始,大陆哲学和英国传统哲学之间产生的矛盾开始升级,裂痕开始增大,这主要是根源于牛顿与莱布尼兹各自的追随者就谁最先发展了微积分所展开的唇枪舌战。起初莱布尼兹的学说在欧洲大陆更占上风(在当时的欧洲,除了英国以外,其他地方都主要使用莱布尼兹的微积分符号),而牛顿个人则一直为引力缺乏一个哲学意义的解释而困扰,但他在笔记中坚持认为不再需要附加任何东西就可以推论出引力的实在性。十八世纪之后,大陆的自然哲学家逐渐接受了牛顿的这种观点,对于用数学描述的运动,开始放弃作出本体论的形而上学解释。
牛顿的绝对时空观?
牛顿的理论体系是建立在他的绝对时间和绝对空间的设之上的,牛顿对时间和空间有着如下的理解: “ 绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而在均匀地、与任何外界事物无关地流逝着。 ”
“ 绝对空间,就其本性而言,是与外界任何事物无关而永远是相同的和不动的。 ”
—牛顿, 《自然哲学的数学原理》
牛顿从绝对时空的设进一步定义了“绝对运动”和“绝对静止”的概念,为了证明绝对运动的存在性,牛顿还在1689年构思了一个理想实验,即著名的水桶实验。在水桶实验中,一个注水的水桶起初保持静止。当它开始发生转动时,水桶中的水最初仍保持静止,但随后也会随着水桶一起转动,于是可以看到水渐渐地脱离其中心而沿桶壁上升形成凹状,直到最后和水桶的转速一致,水面相对静止。牛顿认为水面的升高显示了水脱离转轴的倾向,这种倾向不依赖于水相对周围物体的任何移动。牛顿的绝对时空观作为他理论体系的基础设,却在其后的两百年间倍受质疑。特别是到了十九世纪末,奥地利物理学家恩斯特·马赫在他的《力学史评》中对牛顿的绝对时空观做出了尖锐的批判。
编辑本段卡约里著《物理学史》
中译本版权信息
卡约里著《物理学史》
[1]书名:物理学史(A History of Physics) 作者:(美)弗·卡约里 译者:戴念祖译,范岱年校 出版社:广西师范大学出版社 版次:2002年10月第1版 印次:2002年10月第1次印刷,2002年12月第2次印刷 印数:1~10 000,10 001~15000 开本:787mm*1 092mm 1/16 印张:22.5 字数:325千字 定价:35.00元 ISBN:7-5633-3688-5
作者简介
弗·卡约里,美国著名数学家和科学史家,1859年生于瑞士,1875年回到美国,1930年卒于美国。他是美国数学学会、科学发展协会、科学史学会会员,还是国际科学史学会会员,著有《美国数学教学与数学史》《数学史》《北美洲和南美洲早期数学教学》《数学符号史》等著作。
译者简介
戴念祖,1942年生。现为中国科学院科学史研究所研究员。著有《中国力学史》《中国声学史》等,发表论文近百篇,数次荣获中国科学院自然科学奖。
内容简介
《物理学史》是一部早已为物理学界、科学史界所熟悉、重视和推崇的物理学通史,它叙述了从古代巴比伦时期至1925年物理学发展的重要历史事实。作者对于历史事实的取材及重大历史的描叙,态度是极为客观和严谨的,许多叙述甚至成为了哲学史、思想史的研究素材。此外,《物理学史》还描写了实验室的发展历程及现在出版的科学史著作中不再提及的历史或尚未引起人们注意的发展事实,这在科学史著作中是极少见并难能可贵的。 本书译者还为《物理学史》加上了中国物理学的发展简史,从而大大地丰富了该书的内容。《物理学史》在文后还附有参考文献和索引,便于读者深入研究和查索事实。 《物理学史》初版于1899年,1962年出了第6版,期间多次加印、修订。而相比之下,中国学者所著的多种版本的“物理学史”显得教条死板。
本书目录
再版序 第一版序 巴比伦人和埃及人 希腊人(力学、光学、电和磁、气象学、声学、原子论、希腊物理学研究的“失败”) 罗马人 阿拉伯人 中世纪时期的欧洲(火药和航海罗盘、流体静力学、光学) 文艺复兴(哥白尼体系、 力学、光学、电和磁、气象学、科学研究的归纳法) 17世纪(力学、光学、电和磁、气象学、声学) 18世纪(力学、光学、电和磁、气象学、声学) 19世纪(物质结构、光学、热学、电和磁、声学) 20世纪(放射现象、热学、光学、力学、物质结构、电和磁、声学、回顾、物理实验室的进化) 译后记 事项索引 人名索引
高考物理交变电流公式归纳
我精选了两篇文章,希望对你有用。祝你高考物理考出好成绩!
相信自己,你能行的!!!!!!
八类物理学习方法
一、观察的几种方法
1、顺序观察法:按一定的顺序进行观察。
2、特征观察法:根据现象的特征进行观察。
3、对比观察法:对前后几次实验现象或实验数据的观察进行比较。
4、全面观察法:对现象进行全面的观察,了解观察对象的全貌。
二、过程的分析方法
1、化解过程层次:一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。
2、探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键环节。
3、理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的“综合效应”。要正确分析,就要全方位、多角度的进行观察和分析,从内在联系上把握规律、理顺关系,寻求解决方法。
4、区分变化条件:物理现象都是在一定条件下发生发展的。条件变化了,物理过程也会随之而发生变化。在分析问题时,要特别注意区分由于条件变化而引起的物理过程的变化,避免把形同质异的问题混为一谈。
三、因果分析法
1、分清因果地位:物理学中有许多物理量是通过比值来定义的。如R=U/R、E=F/q等。在这种定义方法中,物理量之间并非都互为比例关系的。但学生在运用物理公式处理物理习题和问题时,常常不理解公式中物理量本身意义,分不清哪些量之间有因果联系,哪些量之间没有因果联系。 2、注意因果对应:任何结果由一定的原因引起,一定的原因产生一定的结果。因果常是一一对应的,不能混淆。
3、循因导果,执果索因:在物理习题的训练中,从不同的方向用不同的思维方式去进行因果分析,有利于发展多向性思维。
四、原型启发法
原型启发就是通过与设的事物具有相似性的东西,来启发人们解决新问题的途径。能够起到启发作用的事物叫做原型。原型可来源于生活、生产和实验。如鱼的体型是创造船体的原型。原型启发能否实现取决于头脑中是否存在原型,原型又与头脑中的表象储备有关,增加原型主要有以下三种途径:1、注意观察生活中的各种现象,并争取用学到的知识予以初步解释;2、通过课外书、电视、科教**的观看来得到;3、要重视实验。
五、概括法
概括是一种由个别到一般的认识方法。它的基本特点是从同类的个别对象中发现它们的共同性,由特定的、较小范围的认识扩展到更普遍性的,较大范围的认识。从心理学的角度来说,概括有两种不同的形式:一种是高级形式的、科学的概括,这种概括的结果得到的往往是概念,这种概括称为概念概括;另一种是初级形式的、经验的概括,又叫相似特征的概括。
相似特征概括是根据事物的外部特征对不同事物进行比较,舍弃它们不相同的特征,而对它们共同的特征加以概括,这是知觉表象阶段的概括,结果往往是感性的,是初级的。要转化为高级形式的概括,必须要在经验概括的基础上,对各种事物和现象作深入的分析、综合,从中抽象出事物和现象的本质属性,舍弃非本质的属性。
六、归纳法
归纳方法是经典物理研究及其理论建构中的一种重要方法。它要解决的主要任务是:第一由因导果或执果索因,理解事物和现象的因果联系,为认识物理规律作辅垫。第二透过现象抓本质,将一定的物理事实(现象、过程)归入某个范畴,并找到支配的规律性。完成这一归纳任务的方法是:在观察和实验的基础上,通过审慎地考察各种事例,并运用比较、分析、综合、抽象、概括以及探究因果关系等一系列逻辑方法,推出一般性猜想或说,然后再运用演绎对其进行修正和补充,直至最后得到物理学的普遍性结论。比较法返回
比较的方法,是物理学研究中一种常用的思维方法,也是我们经常运用的一种最基本的方法。这种方法的实质,就是辩析物理现象、概念、规律的同中之异,异中之同,以把握其本质属性。
七、类比法
类比是由一种物理现象,想象到另一种物理现象,并对两种物理现象进行比较,由已知物理现象的规律去推出另一种物理现象的规律,或解决另一种物理现象中的问题的思维方法,类比不但可以在物理知识系统内部进行,还可以将许多物理知识与其他知识如数学知识、化学知识、哲学知识、生活常识等进行类比,常能起到点化疑难、开拓思路的作用。
八、设推理法
设推理法是一种科学的思维方法,这就要求我们针对研究对象,根据物理过程,灵活运用规律,大胆设,突破思维方法上的局限性,使问题化繁为简,化难为易。主要有下面几方面内容:
1、物理过程设
2、物理线路设
3、推理过程设
4、临界状态设
5、矢量方向设。
状元谈物理学习
一、物理的学习是模块化的,共分四个模块:
1.对概念的理解,不能单纯地去背诵。面对一个新的物理量,重要的是要了解它在实际解题中作用。
2.概念的应用:理解概念之后,对它的应用就没有什么大的问题了。解题是,要抓住,每道题中的每一句话都是在给你条件,只要将条件与物理量相对应,然后代到相应的公式中,就可以解出答案了。
3.衍生
4.综合:物理的各个章节中,除了光学相对独立之外,其它都是联系很紧密的,必须注意将他们之间前呼后应起来。
二、如何做习题:
做习题特别是理科习题时,必须把握量与质的关系。主要抓做题的质量。“我”在高中期间从未买过习题,主要是做完书上以及老师给出的题后,总结出每道题的解题思路。解题的过程分为:
1. 分析物理进程:把过程抽象为物理量
2. 利用数学将题解出来
三、学习习惯:
1)上课应该认真听讲,至于学习方法,应该是让学习方法适应自己,而不是让自己去适应别人用起来好的方法。
2)做题的时候要多思考,多提问题。“我”做题的速度一向很慢的,但是每次做完题后,都看看是怎样得出的,看看对以后有什么可借鉴的,达到举一反三的效果,而不是做完后就置之脑后。这样,“我”考试的时候就快了,不象别人,到了考试的时候又去忙着推导。
3)要即错即问,多与老师、同学讨论问题,不要害羞。
4)复习要一遍一遍地反复复习。
5)对于参考书,成绩不是太好的同学,买的时候要找那些有解析、总结归纳比较好的书,而非是那种单纯给出答案的书。
高考状元谈物理学习与复习
尹鹏(北京大学生命科学学院生物化学及分子生物学系学生,河北省高考理科状元)
走过一年高三,对物理的学习和复习有不少体会,在这里想谈两点:一是如何读书,一是如何做题,希望能对高三的同学们有所帮助。
物理是一门理论性很强的学科,有众多的概念和规律。在高三复习中,课本应是我们的立足点。读书,一定要读透,不要只是走马观花、浮光掠影地翻一遍;也不要对知识死记硬背,生吞活剥。注意对知识的深入理解和领会:明确各个概念、公式和定律的内涵及外延;对一组相互关连的概念,分清主次,比较其相同点和不同点;对一组定律、公式,搞清其相互联系和前因后果……一方面要深入把握各个知识点、知识块;同时还应站在高处;把握整个物理知识体系,从整体上和相互联系上来掌握知识。整个物理体系,就像一座宏伟的大厦,内部有和谐、完美的结构,每个知识点都有各自的位置,它们背后有相互联系。归纳和总结的工作,对于理清知识脉络,在头脑中建立一个完整而和谐的知识体系是必不可少的,建议高三的同学能有一个总结本,用于知识的归纳和整理,相信这对大家的学习不无裨益。
一方面要立足课本,打好基础;另一方面还要注意进一步的提高,为了锻炼自己的物理思维,也为了提高应试能力,适量的习题是不可缺的。做题,要把握住两个字:一个“精”,一是“思”。“精”,主要对题目的选择而言,现在出版的物理习题、复习书数不胜数,这样多的书,必然是良莠混杂,高下不齐的。如果选了一本不好的习题书,埋头做下去,如同在一块贫瘠的土地上辛勤耕作,汗水洒了许多,收获却甚为廖廖,选择习题时,最好是请教一下老师或往届的学生,参考他们的意见,再根据自己的情况,做出适宜的选择。做题要注意“思”,“思”是贯穿解题的全过程的,在这里特别要谈一下很重要而又常被忽略的“题后思”,每道题都对应着一个或几个知识点,一种或几种解题方法,解完题后要想一想,如果这些知识点或解题方法自己掌握不好,那么在这个题上做一个记号,同时把这个知识点或方法总结到自己的笔记本上,如果这道题自己没能解出来,看过答案之后,自己最好再独立地解一遍,以便更深入的领会和掌握这种方法。选题要 “精”,做题要“思”,若能把握住这两点,常能收到事半功倍的效果。
相信大家如果既能立足课本,打牢基础,又能巧妙做题,稳步提高,那么你们付出的努力必会得到相应的回报。
蔡明(北京大学物理系学生):
我从中学就对物理很感兴趣,高考以物理成绩满分考入北大物理系,下面就向大家介绍一下我对物理的学习方法和体会。其中的不足和错误之处在所难免,恳请广大老师和同学们批评指正。
要取得优异的学习成绩,关键在于有一个行之有效的学习方法。我认为,一个好的学习方法包括四个主要环节:预习、听课、复习、做题。下面分别介绍一下这几个环节。
首先要认识到预习的重要性。通过预习,可以抓住本节的难点,从而在上课听讲时“有的放矢”,主动地获取知识,而且通过预习,可以培养自己的自学、理解能力和独立思考问题的能力,这也正是学习物理的目的之一。学物理不仅在于学习物理知识本身,更重要的是掌握物理的这一套分析问题、解决问题的能力。
预习并不是简单地看看书就完了,而是应当认真阅读课本,反复琢磨每一句话,仔细推敲各个物理定律,直到弄懂为止。实在不懂的,应当做好标记,这正是你上课听讲的重点。因此通过有目的地预习,可以变被动为主动,为牢固掌握知识打下良好的基础。听课是学习的最关键环节。
听课时,一是要注意教师强调的重点,这往往是各类考试的主要目标;其次要注意预习时标记的不懂之处。当教师讲到该处时,一定要仔细听,积极思考,一般来说是会明白的。如果实在还不懂,则不要思考过多而耽误听课,可以等课后再向教师请教。好记性不如烂笔头。上课除了认真听讲外,还要记好笔记。因为笔记往往是教师在多年的教学实践中总结下来的重点和难点的条理化、具体化,凝聚着教师的心血。此外,记好笔记,也便于复习时抓住重点。
听完课后,大脑中的知识点就像一个个漂亮的珍珠散落在地,必须通过“复习”这根线,把它们连成一串美丽的项链。复习时应当对照笔记上的重点,预习时的难点来仔细咀嚼课本,重要的物理概念、物理定律应牢记在心。复习时就不能像预习时那样只局限于本节,因为物理学中有许多规律是相似的,许多概念、定律都有着内在的联系,例如物体在重力场和电场中的运动,万有引力定律和库仑定律的平方反比性,波动和振动的联系与区别等等。这就要求我们在复习中要注意前后联系与沟通,从而更好地掌握它们的性质。
复习完后,并不是大功告成,你现在只是知道了物理定律,但它在具体情况下如何运用,运用时有何技巧,还有任何一个物理定律都有它的适用范围。超过这个范围,该定律可能就不成立了,就要用更精确的理论来代替它。这些你可能并不知道或不熟悉,这就得通过做题来巩固所学知识,运用物理定律解决实际问题,在做题中积累经验,熟才能生巧。我并不主张搞题海战术,而是应当少而精,多做几种不同类型的题。每次做题前要先认真审题,分清题型,从而找到适合于某类题型的通法,做到举一反三,触类旁通。
除了课本之外,还应当看一些课外参考书,它们对加深对物理定律的理解熟练运用是大有裨益的。在参考书的选择上,不应当选择那些习题集、习题选、题库之类,因为它们只有一个简单的答案,既没有思路分析,又没有定律运用,做对了答案也是食而不知其物,做错了更是不知道为什么。因此,要选择学习辅导,解题指导一类的书,它们往往有详细的解题思路分析和具体的解题步聚。因为同一道物理题,由于思考问题出发点不同,用的物理定律不同,运用的数学手段不同,往往会导致解题过程繁简程度大相径庭,当你做完题后再看参考书的解法时,往往会发现一种更巧妙的思路、更灵活运用的物理定律、更有效的数学手段、更新颖的解题方法。这样每做一道题就会有很大收获。而且久而久之,总是接触新颖变通、灵活的思路,会使你思维开阔、脑筋更灵活。此外,最好把做题时遇到有关定律应用的类型及技巧和注意事项都补充到笔记上的相应章节,这样会使你在以后的复习中把它们都系统地纳入你的知识网中。
总之,预习是做一个准备,听课是获取知识点,复习则是将知识点联成线,做题是进一步把线复连成网,从而使知识融汇贯通。只有把握好学习的四个环节,才能在学习中得心应手,取得优异的成绩。
马经国(北京大学技术物理系学生)
我们学任何一门课程,既要靠老师“扶着走”,也要主动学会“自己走”。特别对于物理,自学更不可少。我们通常所说的预习,在一定程度上也就是自学。也许有人认为自己不具备自学能力,这不要紧,只要你有了对学习的兴趣,自学自然就有了动力,也就有了良好的开端。
一个人对某一学科的学习兴趣是后天养成的。实际上,我们可以由自学来培养自己的学习兴趣。自学,可以自己精读课本,也可以广泛涉猎课外书籍,扩充知识面。这样,自学既给我们带来了知识,又带来了兴趣。兴趣可以进一步促进学习,学习又为自学提供了基础,自学与学习可以互为补充,共同前进。
自学除了平时挤一点时间外,寒暑是自学的好时机。一般来说,对比较集中的时间,要注意支配,充分利用;而零散的时间,主要用于搭配日常课程。自学的方法很多。总的来说,首先得要有一个自学,这是自学起步的关键。制定要讲究科学性:早期要着重于打好基础。注重自学课本;中期重于阅读一定数量的课外书籍,提高自己的能力素质;后期注意教材与参考书的结合,全面发展。一旦制定时间表后,不宜轻易更改,一定要实践一段时间,才能作出改动决策。面对繁重的学习任务,自学要有可行性,不要好高骛远,妄想一蹴而就。任何事物都有一个量变到质变的过程,特别注意循序渐进。要有“登山则情满于山,观海则情溢于海”的精神。
面对众多的刊物,一定选几本内容精彩的加以精读,如《中学生数理化》等,力争吃透它,达到触类旁通,举一反三。像那些有关物理学史的书,也可以浏览一下,对于培养兴趣还是有益的。
自学笔记在自学过程中也特别重要,最好物理科的笔记集中在一起,制成卡片,便于查阅、记诵。尤其对那些疑难点应有锲而不舍的精神,仰之弥高,钻之弥坚。记得一位物理学家说过:“遇到疑难既不要止步不前,也不要弃之不管,而应记录下来争取一条条解决。前边发现的问题,也许到后面就迎刃而解了,当大部分问题被你解决了之后,带给你的将是无穷的喜悦和信心。”对自学中发现不懂的东西要持乐观态度,学习上从没有平坦的大道,必要时可以向别人求助,脚踏实地地去解决每一个遇到的难题。
人生有涯,学海无边。只有自学才使我们真正懂得了学习的含义。自学与学习没有绝对的分界线,它们是事物联系的两个方面。因此,我们在注重搞好学习的同时,也应看到自学的能动作用。
吕志鹏(北京大学技术物理系学生):
有人曾说,优秀的物理学家同时也是数学家。这种说法有一定的道理,物理中有许多知识是需要严谨的数学来推理验证的。如果读者具备了一定的数学功底,学起物理来一定很容易。
物理的学习依靠记忆和理解,记忆是理解的基础,完全否定记忆是毫无理由的,也是学物理的弊端,当记忆牢固之后,必须要求理解,当对一个问题理解深刻后,今后遇到这类问题就会立即反应过来,不至于茫茫不知所措。
学好物理关键之一是画好示意图。文字总是比较抽象的,当解题者将对文字的理解转化为图表并体现出在整个物理环境中
首先分析一下上面同学们提出的普遍问题,即为什么上课听得懂,而课下不会作?我作为学理科的教师有这样的切身感觉:比如读某一篇文学作品,文章中对自然景色的描写,对人物心里活动的描写,都写得令人叫绝,而自己也知道是如此,但若让自己提起笔来写,未必或者说就不能写出人家的水平来。听别人说话,看别人文章,听懂看懂绝对没有问题,但要自己写出来变成自己的东西就不那么容易了。又比如小孩会说的东西,要让他写出来,就必须经过反复写的练习才能达到那一步。因而要由听懂变成会作,就要在听懂的基础上,多多练习,方能掌握其中的规律和奥妙,真正变成自己的东西,这也正是学习高中物理应该下功夫的地方。功夫如何下,在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个层次来具体分析。
记忆:在高中物理的学习中,应熟记基本概念,规律和一些最基本的结论,即所谓我们常提起的最基础的知识。同学们往往忽视这些基本概念的记忆,认为学习物理不用死记硬背这些文字性的东西,其结果在高三总复习中提问同学物理概念,能准确地说出来的同学很少,即使是补习班的同学也几乎如此。我不敢绝对说物理概念背不完整对你某一次考试或某一阶段的学习造成多大的影响,但可以肯定地说,这对你对物理问题的理解,对你整个物理系统知识的形成都有内在的不良影响,说不准哪一次考试的哪一道题就因为你概念不准而失分。因此,学习语文需要熟记名言警句、学习数学必须记忆基本公式,学习物理也必须熟记基本概念和规律,这是学好物理科的最先要条件,是学好物理的最基本要求,没有这一步,下面的学习无从谈起。
积累:是学习物理过程中记忆后的工作。在记忆的基础上,不断搜集来自课本和参考资料上的许多有关物理知识的相关信息,这些信息有的来自一题,有的来自一道题的一个插图,也可能来自一小段阅读材料等等。在搜集整理过程中,要善于将不同知识点分析归类,在整理过程中,找出相同点,也找出不同点,以便于记忆。积累过程是记忆和遗忘相互斗争的过程,但是要通过反复记忆使知识更全面、更系统,使公式、定理、定律的联系更加紧密,这样才能达到积累的目的,绝不能象狗熊掰棒子式的重复劳动,不加思考地机械记忆,其结果只能使记忆的比遗忘的还多。
综合:物理知识是分章分节的,物理考纲能要求之内容也是一块一块的,它们既相互联系,又相互区别,所以在物理学习过程中要不断进行小综合,等高三年级知识学完后再进行系统大综合。这个过程对同学们能力要求较高,章节内容互相联系,不同章节之间可以互相类比,真正将前后知识融会贯通,连为一体,这样就逐渐从综合中找到知识的联系,同时也找到了学习物理知识的兴趣。
提高:有了前面知识的记忆和积累,再进行认真综合,就能在解题能力上有所提高。所谓提高能力,说白了就是提高解题、分析问题的能力,针对一题目,首先要看是什么问题——力学,热学,电磁学、光学还是原子物理,然后再明确研究对象,结合题目中所给条件,应用相关物理概念,规律,也可用一些物理一级,二级结论,才能顺利求得结果。可以想象,如果物理基本概念不明确,题目中既给的条件或隐含的条件看不出来,或解题既用的公式不对或该用一、二级结论,而用了原始公式,都会使解题的速度和正确性受到影响,考试中得出高分就成了空话。提高首先是解决问题熟练,然后是解法灵活,而后在解题方法上有所创新。这里面包括对同一题的多解,能从多解中选中一种最简单的方法;还包括多题一解,一种方法去顺利解决多个类似的题目。真正做到灵巧运用,信手拈来的程度。
综上所术,学习物理大致有六个层次,即首先听懂,而后记住,练习会用,渐逐熟练,熟能生巧,有所创新?
1,把书本的基础知识,大字部分全背熟记熟来,不管你基础好不好.
2,多多总结自己以前做过的题目,看看自己是怎么错的,错在哪里,记熟这一类的题目.
还有,如果你想成为那种物理天才,我推荐你买N本物理的辅导书,然后做N多练习.不过这样做的前提必须是你的基础要非常牢固.这个方法我是看我们班上理科最好的那个同学的方法的.
复习时,把高考物理交变电流公式的要点内容熟练运用,相信可以提高物理成绩。下面我给大家带来高考物理交变电流公式,希望对你有帮助。
高考物理交变电流公式
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;ω=2πf
2.电动势峰值Em=nBSω=2BLv 电流峰值纯电阻电路中Im=Em/R总
3.正余弦式交变电流有效值:E=Em/21/2;U=Um/21/2 ;I=Im/21/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,用高压输送电能可以减少电能在输电线上的损失损′=P/U2R;P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻〔见第二册P198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率rad/s;t:时间s;n:线圈匝数;B:磁感强度T;S:线圈的面积m2;U输出电压V;I:电流强度A;P:功率W。
注:
1交变电流的变化频率与发电机中线圈的转动的频率相同即:ω电=ω线,f电=f线;
2发电机中,线圈在中性面位置磁通量最大,感应电动势为零,过中性面电流方向就改变;
3有效值是根据电流热效应定义的,没有特别说明的交流数值都指有效值;
4理想变压器的匝数比一定时,输出电压由输入电压决定,输入电流由输出电流决定,输入功率等于输出功率,当负载的消耗的功率增大时输入功率也增大,即P出决定P入;
5其它相关内容:正弦交流电图象〔见第二册P190〕/电阻、电感和电容对交变电流的作用〔见第二册P193〕。
高考物理学史知识点
1布朗:英国植物学家,在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”.
2开尔文:英国科学家,创立了热力学温标.
3克劳修斯:德国物理学家,建立了热力学第二定律.
4麦克斯韦:英国科学家,总结前人研究的基础上,建立了完整的电磁场理论.
5赫兹:德国科学家,在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,并测得电磁波传播速度等于光速,证实了光是一种电磁波.
6惠更斯:荷兰科学家,在对光的研究中,提出了光的波动说,发明了摆钟.
7托马斯·杨:英国物理学家,首先巧妙而简单地解决了相干光源问题,成功地观察到光的干涉现象.
8伦琴:德国物理学家,继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线——伦琴射线.
9普朗克:德国物理学家,提出量子概念——电磁辐射含光辐射的能量是不连续的,其在热力学方面也有巨大贡献.
10爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论.
11德布罗意:法国物理学家,提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应.
12汤姆生:英国科学家,研究阴极射线时发现了电子,测得了电子的比荷;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象.
13卢瑟福:英国物理学家,通过α粒子的散射现象,提出原子的核式结构.实现人工核转变的第一人,发现了质子.
14玻尔:丹麦物理学家,把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论.
15查德威克:英国物理学家,从原子核的人工转变实验研究中,发现了中子.
16威尔逊:英国物理学家,发明了威尔逊云室以观察α、β、γ射线的径迹.
17贝克勒尔:法国物理学家,首次发现了铀的天然放射现象,开始认识原子核结构是复杂的.
18玛丽·居里夫妇:法国波兰物理学家,是原子物理的先驱者,“镭”的发现者.
19约里奥·居里夫妇:法国物理学家;老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素.
高考物理学习方法
听得懂
高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
记牢固
尤其是基本的概念。定义、定律、结论等,不要把这些看成可记可不记的知识,轻视了,高中生对物理问题的理解、运用就会受阻,在物理解题过程中就会因概念不清而丢分,掌握三基本:基本概念清、基本规律熟、基本方法会,这些都是要记住的范畴。只有这样,高中生学习物理才会得心应手,各种难题才会迎刃而解。
会运用
会运用才是提高成绩的根本,就是对概念、公式等要掌握灵活,活学活用,不是死记硬背,不同的题型用不同的解题方法,公式的运用也是做到灵活多变,以达到正确解题的目的。比如对于牛顿三大运动定律、什么是动量、为什么动量会守恒这些动力学的基本概念的理解,仅仅停留在字面上学起来就是枯燥的,甚至是难于理解的,而这些知识又影响着整个力学的学习过程,所以,在高中物理学习过程中,试着把这些概念化的内容融于各种题型中,将其内化成高中生的基本知识,另辟思路,学起来就容易得多了,学习效益会翻倍。
练得熟
高中物理知识是分板块的,各内容间既相互联络,又相互区别,所以在物理学习过程中,练是很有必要的,俗话说,熟能生巧,练得多了,也就轻车熟路了,各知识点之间就能形成一定的类比,高中生就可以将前后知识融会贯通,由点及面的综合运用了。