您现在的位置是: 首页 > 教育政策 教育政策

2017高考数学试卷浙江,2017浙江数学高考真题答案

tamoadmin 2024-07-24 人已围观

简介1.2017年高考试题全国各个省试题都一样吗2.怎样评价2017年理科高考数学试卷3.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?高中数学合集百度网盘下载链接:s://pan.baidu/s/1znmI8mJTas01m1m03zCRfQ?pwd=1234提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、、各大名师网校合集

1.2017年高考试题全国各个省试题都一样吗

2.怎样评价2017年理科高考数学试卷

3.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?

2017高考数学试卷浙江,2017浙江数学高考真题答案

高中数学合集百度网盘下载

链接:s://pan.baidu/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、、各大名师网校合集。

2017年高考试题全国各个省试题都一样吗

由前面推导可知,即由题设可知根的判别式=16(4K^2-m^2+1)>0,后面又求得k=-(m+1)/2

这样将k代入进去,4K^2-m^2+1>0

4ⅹ[-(m+1)/2]^2-m^2+1>0

化简得2m+2>0得m>-1

所以当且仅当m>-1时,根的判别式﹥0就是这样得来的。

怎样评价2017年理科高考数学试卷

不一样,试卷选用情况如下:

全国I卷(全国乙卷):河南、河北、山西、安徽、湖北、湖南、江西、广东、福建、山东(注:2017年山东省仅英语、综合两科使用全国卷,语文、数学两科仍自主命题)

全国II卷(全国甲卷):黑龙江、吉林、辽宁、内蒙古、宁夏、甘肃、新疆、青海、西藏、陕西、重庆、海南(注:2017年海南省仅语文、数学、英语三科使用全国卷,物理/政治、化学/历史、生物/地理三科仍使用教育部为其单独命题的分科试卷)

全国III卷(全国丙卷):贵州、广西、云南、四川

自主命题:北京、天津、江苏、浙江、上海、山东(仅语文、数学两科)。

扩展资料

不得参加高考的情形:

(1)具有高等学历教育资格的高校的在校生;或已被高等学校录取并保留入学资格的学生;

(2)高级中等教育学校非应届毕业的在校生;

(3)在高级中等教育阶段非应届毕业年份以弄虚作手段报名并违规参加普通高校招生考试(包括全国统考、省级统考和高校单独组织的招生考试)的应届毕业生;

(4)因违反国家教育考试规定,被给予暂停参加普通高校招生考试处理且在停考期内的人员;

(5)因触犯刑法已被有关部门取强制措施或正在者。

百度百科——2017年普通高等学校招生全国统一考试

2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?

试题与去年相比试卷命朴实,平易近人,试卷贴近考生,符合师生期望,整体中较为常规。

试题中不少题目让师生一见如故,平和亲切,重视考查学生的基本数学素养,全盘兼顾知识点、思想方法与能力的考查,关注数学的应用意识与创新意识,除了具有良好的选拔功能,对中学数学教学也具有很好的导向作用,主要表现在注重基础,重视数学素养,加强数学应用与数学思维能力的培养。

注重基础2017年全国高考文科数学Ⅰ卷对基础知识与基础技能的重全面,又突出重点,贴切教学实际,试卷中的每种题型均设置了数量较多的基础题,许多试题都是单一知识点或是最基础的知识交汇点上设置,如1、2、3、6、7、10、11、13、14、15占选择填空题的比例较高达到63﹪.

数学素养方面:

试卷的第12题以解析几何中的椭圆为背景考察了对椭圆的焦点在x,y坐标轴上进行的分类讨论思想,第21题的导数题求导后对a的正负进行的分类讨论思想。第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题,贴近考生生活,通过本题的求解,使考生感受中华传统优秀文化的民族性与世界性,深刻地认识到中华民族优秀传统文化的博大精深和源远流长,激励他们创造出更加辉煌的成就。

试卷重视数学知识的应用:

背景来自于学生所能理解的生活现实与社会现实,如19题以生产零件为命题背景,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值与人文特色,其中知识难度并不复杂,主要在计算能力上的要求较高。对考生的阅读理解能力、数据处理计算能力,理性思维进行了全方面的考查。

综合性与创新性:

为了提高区分度,试卷在注重基础的同时,也充分考查学生的创新意识,试题稳中有变,如第12题,解析几何知识为依托,结合三角函数考查学生对知识点的细节分析能力,给中等学生提供了展示舞台。再如第16题,对学生的空间想象能力,计算能力,分析问题的能力都有较高的要求,对于基础比较好的同学有一定的优势。具有较好的区分度,体现了高考的选拔性。再如第21题,第一问主要考察学生的分类讨论思想,属于学生熟悉的题型,但是对导函数进行因式分解具有一定的难度,第二问比较容易入手,由第1问的讨论学生需要讨论求最小值,难点在于求解不等式,需要学生有较高综合分析能力以及一定的计算能力的要求,这也充分体现了综合性与创新性的特点.当然本题也给优秀学生提供了发挥的平台。

从今年的试卷总体情况来看,新课标卷贴近中学教学实际,注重思想与方法的考察,体现了数学的基础性,应用性和工具性的学科特色,善于应用知识之间的内在联系构建试卷的主体结构,命题更加科学。

f'(x)=2ax+(2-a)-1/x

=(2ax^2+(2-a)x-1)/x

=(2x-1)(ax+1)/x

a>1

令f'(x)>=0

x<=-1/a或x>=1/2

定义域是x>0

∴x>=1/2

增区间是[1/2,+∞),减区间是(0,1/2]

当1/a>=1/2时

f(x)在区间[1/a,1]内的最大值

=f(1)

=a+2-a-0

=2不是ln3

∴1/a<1/2

a>2

f(x)在区间[1/a,1]内的最大值

=f(1/a)

=a*1/a^2+(2-a)/a-ln(1/a)

=1/a+2/a-1+lna

=3/a-1+lna

=ln3

∴a=3符合a>2

综上a=3

如果您认可我的回答,请点击“为满意答案”,祝学习进步!

文章标签: # 全国 # 数学 # gt