您现在的位置是: 首页 > 教育政策 教育政策
高考零点问题的解题技巧-零点高考典例
tamoadmin 2024-09-11 人已围观
简介1.专家对今年对高考题怎么看2.急啊,拜托各位了!!某钟表在7月29日零点比标准时间慢4分钟半,它3.高三数学4.高一数学教案用二分法求方程的近似解专家对今年对高考题怎么看语文:着眼阅读素养,突出考察传统文化 三类阅读题成必考 “今年语文科目的一大变化,是把论述类、实用类和文学类文本阅读均作为必考题,实现了全覆盖。”河北省张家口市第一中学语文特级教师尤立增说。 北京大学教授温儒敏直言:“其实
1.专家对今年对高考题怎么看
2.急啊,拜托各位了!!某钟表在7月29日零点比标准时间慢4分钟半,它
3.高三数学
4.高一数学教案用二分法求方程的近似解
专家对今年对高考题怎么看
语文:着眼阅读素养,突出考察传统文化
三类阅读题成必考
“今年语文科目的一大变化,是把论述类、实用类和文学类文本阅读均作为必考题,实现了全覆盖。”河北省张家口市第一中学语文特级教师尤立增说。
北京大学教授温儒敏直言:“其实,早在2017年语文考试大纲修订时,这个变化就引起很大反响。有些学校和老师是考什么就教什么,这几年文学类教学有淡化倾向。现在三类题都要考,会迅速扭转语文教学一线因应试而产生的偏差。”
实用类文本阅读:
全国卷Ⅰ中展现中国影像发展历程的“央视纪录频道”,全国卷Ⅱ中引导学生关注环保的“垃圾分类”调查。
教育部考试中心高考命题专家表示:
“这些题目都做到了文字与图表搭配,要求考生带着问题进入文本,搜寻、锁定、分辨和提炼关键信息,从而实现对考生检索、理解、分析、评价等能力的重点考查。”
文学类文本阅读:
全国卷Ⅰ中有反映军民团结、民族和谐的小说《天嚣》,全国卷Ⅲ中有呈现平凡温馨生活的散文《我们的裁缝店》。
教育部考试中心高考命题专家表示:
“命题均关涉思想情感、人物形象、叙事艺术、语言风格等文学阅读的核心要素,在全面检阅考生文学素养的基础上,突出审美鉴赏能力的考查。”
论述类文本阅读:
全国卷Ⅱ探讨富有历史意义的“青花瓷兴起”,全国卷Ⅲ解读新型城镇化建设背景下的“乡村记忆”。
教育部考试中心高考命题专家表示:
“一方面承继过往,重点考查对文章基本观点的理解,另一方面力图作出新的探索,强化对论述方法、论证方式和批判性思维等方面的考查。”
客观题增加14分,书写总量下降
教育部考试中心高考命题专家表示:
为了进一步拉开试题的区分度,2017年高考语文试卷客观题分值增加了14分,书写总量有所下降,但阅读总量尤其是思维含量并未降低,试卷的整体难度与往年大体持平。
2018高考语文备考方向启示
阅读“关键能力”的培养很重要!
2018高考语文将扩大文本选取范围。论述类文本将多选用论文和时评,考查逻辑论证和批判推理能力;实用类文本将多选用新闻和报告,考查信息处理和超文本阅读能力;文学类文本将多选用小说和散文,考查审美鉴赏能力。
高考语文阅读反映了信息时代阅读的特点和要求,将全方位考查阅读的“关键能力”。学生在阅读广度、数量、速度上要下大功夫。只有全面培养阅读能力、文学素养和思维品质,才能笑傲今后的高考考场!
数学:考察理性思维、实际问题应用能力
分步骤得分,着重区分考生能力
教育部考试中心命题专家:
在教育部考试中心命题专家看来,2017年高考数学卷充分发挥了数学的学科思维,以数学知识为载体,将理性思维、逻辑推理能力作为命题考查的首要任务。
最明显的就是命题时采取分步设问、梯次递进的方式,试题层次感强,便于对考生能力进行区分。
如全国卷Ⅰ第21题第(1)问要求考生求出导函数的零点,进而对参数进行分类讨论,掌握函数的单调性。
在此基础上,第(2)问要求根据函数有两个零点的条件,确定参数的取值范围,层层深入,为考生解答提供广阔的思考空间。
加强了社会实际的应用
“2017年数学科高考加强了应用性,密切结合社会实际,突出运用数学思维解决实际问题。”
如全国卷Ⅰ文科第2题以农作物种植效果为背景,考查用样本估计整体的统计思想方法;理科第12题以大学生创业为背景,考查数列的相关知识;
文理科第19题为工厂生产线质量控制问题,考查运用概率统计方法进行统计推断的应用意识。
新高考数学“不分文理科”,中档题较多
在上海和浙江进行的综合改革试点中,首次命制不分文理的数学试卷,关注学生的数学基础及必备的能力要求,科学设计命题内容,增强基础性、综合性,着重考查学生独立思考和运用所学知识分析、解决问题的能力。
今年浙江的数学卷,首先在试卷结构上有所改进,2016年整卷只有20题,今年变成22题,增加了2道选择题。在整体难度上,较好地贯彻了文科起点、理科终点的命题策略。
最容易的题以文科生为起点,最难的题以北大清华理科生为终点。起点低,坡度缓,中档题数量较多,有利于提高试卷的区分度,突出考试的选拔性。
总体来讲,只要教学中坚持课标,基于标准教学,重视核心素养,学生就一定能考好。
——浙江省数学特级教师、元济高级中学校长卢明
2018年高考数学备考方向启示
逻辑推理能力要比刷更多题重要!
2018高考数学将把考查逻辑推理能力作为重要任务,以数学知识为载体,考查学生缜密思维、严格推理的能力。同时,通过多种渠道渗透数学文化,如有的试题将通过数学史展示数学文化的民族性与世界性;有的将通过揭示知识的产生背景和形成过程,体现数学的创造、发现和发展特点;有的将通过对数学思维方法的总结、提炼,呈现数学的思想性。
英语:强调传统文化,考察语言应用
“稳中有进”“稳得踏实”“进得鲜明”是教育部考试中心高考英语学科命题专家对今年英语高考题的评价。
注重考查特定语境下的语言综合运用能力
教育部考试中心英语学科命题专家表示:
分析2017年高考英语命题的语篇和材料选择、题目类型搭配以及考查要点设置可以发现,各套试卷着力将试卷难度控制在合理范围之内。
全国统一命题试卷和自主命题省份试卷中所选语篇和材料难度水平呈阶梯式分布,题目类型多样且难易搭配合理,考查要点覆盖面广,各难度层级试题数量比例合适,能够很好地区分不同能力水平的考生。
建议在2018年的备考中多培养学生的语篇意识,对语篇的逻辑关系予以分析,注意理解语篇在意义构成上的各种关系,强调把语法教学放在语境当中。
2018高考英语备考方向启示
综合语言运用能力得尽快养成
2018高考英语将通过深度发掘语篇材料思想内涵,突出对综合语言运用能力的考查,促进学生学习能力、交际能力、人文底蕴的养成。
如阅读理解部分可能选取科技创新、环境保护、、遗产保护等话题文章设计试题,引导学生在理解文章内容和作者观点态度的基础上深入思考人与自然、社会的关系,体悟和谐发展之道。
文综:考察学科思维,强调实践导向
地理:着重考查地理学科思维
教育部考试中心高考命题专家:
地理试题以立德树人为核心,以对地理学科关键能力的综合考查为主线,优选考试内容,突出地理思维考查,使得学科特色得到更加鲜明的体现。
试题在取材上放眼时代大潮,贴近社会现实和考生实际,展示了宽广的命题视野。在设计上,着力考查考生的地理素养,测试考生的学科观念。
今年地理试题的一个特点是注重弘扬中华优秀传统文化,引导考生分析其中蕴含的地理原理,使优秀传统文化具象化。
全国Ⅲ卷1—3题、北京卷3—5题、天津卷6—7题,均以“人类非物质文化遗产代表作”为载体,考查背后蕴含的地理特征、原理和联系。
思想政治:强调实践导向,将学科概念具象化
教育部考试中心高考命题专家:
今年的思政试题将中华优秀传统文化、社会主义先进文化融入背景材料,把文化具象化,体现出鲜明的思想教育、价值引领学科特色,引导考生增强文化自信,提高其继承和弘扬优秀传统文化,发展社会主义先进文化的自觉性。
历史:注重基础知识考查,选取经典素材
教育部考试中心高考命题专家:
今年的历史命题坚持以立德树人为立场,以服务选拔为导向,以提高试题质量为要求,试题学科特点突出,既注重主干基础知识考查,又强调学科素养和关键思维能力的培养。
历史试题通过选取典型素材,形成正确的价值观引领。
例如全国Ⅲ卷40题,通过郑成功收复和建设台湾这一历史事件,使考生加深了台湾自古以来就是中国固有领土的认识;
全国Ⅰ卷30题,讲述了抗战时期中国***在根据地扩大民主基础的努力,体现了民主、平等的核心价值观。
2018高考文科综合备考方向启示
学科素养不是一句空话!
2018高考文科综合将注重创新试题设计、挖掘时代主题、构建问题情境,突出地理、思想政治、历史学科所独具的思维与分析方法。
如地理试题将更加注重反映人地协调观、综合思维和区域认知的价值取向,将地理学思想方法自然、贴切地融入素材。
思想政治学科将精心选择能够更好地承载学科知识、反映学科特色的素材,贴近学生生活、贴近时代,更好地发挥考试对教学的导向和促进作用。
历史学科将更加注重考查历史思维过程与方法,如学生对历史事实和历史叙述这两种不同史学概念的理解和辨别程度。
理综:激发实践研究,强调“学以致用”
化学:呈现真实问题,强调“学以致用”
教育部考试中心化学命题专家介绍:
今年教育部考试中心命制的试卷中,运用的实际情境主要有新材料制备、废物综合利用、环境保护技术、有机新物质和新药物合成、无机化工生产以及新技术能源等。
这些试题均要求学生将基础化学知识、基本化学原理和方法运用到实际生产生活中,解释生活中相关的现象,解决工业生产问题。
生物:淡化知识考察,重视实践操作
2017年的实验试题对考生提出了相对较高的要求,这不但有利于高考区分功能的体现,也有利于改善中学教学不重视实验、不重视实际操作,较多关注“背”实验、“记”实验的状况。
题目命制反映了教育改革的方向:
生物试题与即将实施的修订后的新课标接轨。尤其重视理性思维能力与科学探究能力的考查,这就要求老师今后在教学中要以培养学生的生物核心素养为中心,重视学生探究能力的提升,而不是靠背书与题海战术来进行高三的复习。
物理:增加考核内容
2017年高考物理考试大纲完善考核目标和考查内容,将动量、近代物理等知识列为必考内容。
今年高考物理试题的设计密切联系大纲修订的初衷,通过科学设计试卷蓝图,多角度考查修订内容,引导学生认识自然和生产生活中的现象,完善认知结构,为学生进入大学阶段学习打好基础。
2018高考理科综合备考方向启示
新知识或拓展信息将更多出现
2018高考理科综合将坚持把创新思维和学习能力考查渗透到命题全过程,向学生提供新知识或原有知识的延伸拓展信息,考查学生的探究能力和创新精神。
如化学试题可能增加化学反应图形和性能关联图形的体裁,让学生在获得化学信息的基础上,回归到基本反应原理和物质结构知识中去。通过延伸基本知识,在培养学生自学和探究精神方面也进行积极探索。
物理学科通过将动量和近代物理作为必考内容进行考查,完善学生的知识结构,为学生解决问题提供更多有力工具,有利于学生更好地认识实际现象,理解更深层次问题。
生物学科要求学生能够对生物学问题进行探究,包括提出问题、做出假设、制定和实施计划、得出结论、科学表达等;同时,要求学生具备实验设计、实验结果预测的能力。
2017年高考命题具有“四性”
增强基础性——不是考教材原话,而是考查学生必备知识和关键能力
“基础性”包括全面合理的知识结构、扎实灵活的能力要求和健全向上的人格素养。高考通过加强对基本概念、基本原理、基本思想方法的考查,引导学生重视基础,将所学知识和方法内化为自身的能力。
例如,2017高考语文学科将论述类文本阅读、文学类文本阅读和实用类文本阅读均设置为必做题,对不同的思维方式和素养构成进行考查,全面覆盖信息筛选、逻辑分析、审美鉴赏以及语言运用等能力。
增强综合性——不是考“大杂烩”,而是考查学生的知识体系和对知识间联系的把握
综合性主要体现考察学生综合运用学科知识、思维方法,多角度地观察、思考,发现、分析和解决问题的能力。高考试题设计注重素材选取的普遍性,突出知识体系的完整性和知识间的联系,要求学生能够基于试题情境深入思考,整合所学知识得出观点和结论。
比如,2017高考全国Ⅰ卷25题物理试题以学生熟悉的带电油滴实验为背景,构造相对复杂的物理过程,要求学生经过分析并对相关情形进行讨论,综合运用相关概念和规律解决问题。全国Ⅰ卷27题化学试题,呈现由钛铁矿生产锂离子电池电极材料的工艺框图,提供必要数据,要求学生利用元素化合物以及热力学、动力学等知识分析选择物质提取和转化的最佳条件,考查学生的综合运用能力。
加强应用性——不是理论“空对空”,而是考查解决现实问题
应用性,主要体现考察学生运用所学知识解决实际问题的能力。2017高考试题注重将学科内容与国家经济社会发展、科学进步、生产生活实际等紧密联系起来,通过设置新颖的问题情境,引导学生关注社会进步和科学发展。
例如,全国Ⅱ卷数学19题以水产品养殖方法为背景,设计了根据样本数据分析比较新、旧养殖方法生产效益的问题,体现了统计与概率的工具性和应用性以及数学与现实社会的紧密联系。物理试题设计了冰球运动员训练的情境;化学试题设计了废物综合利用、新药物合成以及新能源技术等情境。
增强探究性和开放性——各科的压轴题着重考查学生的创新意识,北大清华学生就从这些题中选拔!
创新性主要体现在考察学生独立思考能力,看其是否能够自觉运用批判性和创新性思维方法。试题通过增强情境的探究性和设问的开放性,允许学生从多角度思考,对同一问题或现象得出不同的结论,使学生能够从标准答案的束缚中解放出来,发展个性,增强创新意识。
例如,数学全国Ⅰ卷12题紧扣“大众创业,万众创新”的时代背景,以学生熟知的源于生活的“软件激活码”为切入点,借助等差数列、等比数列,着重考查学生的创新应用能力。全国Ⅱ卷35题化学试题以我国科学家发表的“五氮阴离子化合物”科研论文为背景,要求学生创造性地解释新颖化合物稳定存在的结构因素,体现题材新颖、形式独特、设问创新的特点。全国Ⅲ卷36题地理试题要求学生选择并回答是否赞同在某地扩大温室农业生产规模的理由,使学生从标准答案的束缚中解放出来,培养创新思维。
2018年高考各科将着重考查这些能力
语文:全面考查学生阅读“关键能力”
高考语文阅读反映了信息时代阅读的特点和要求,全方位考查了阅读的“关键能力”,有效提升了测量的信度和效度,将会促进基础教育重视对学生阅读能力、文学素养和思维品质的全面培养,从而在综合型人才的培养方面发挥重要作用。
数学:考察学生理性思维,创新能力
高考数学把考查逻辑推理能力作为重要任务,以数学知识为载体,考查学生缜密思 维、严格推理的能力。
高考数学除体现出较强的选拔功能外,还对提升学生学科素养、培养学生创新精神,对数学课程和教学改革均具有积极的导向和促进作用。
英语:考查综合语言运用能力
高考英语通过深度发掘语篇材料思想内涵,突出综合语言运用能力的考查,促进学生学习能力、交际能力、人文底蕴的养成。
文综:着重考察学科素养
文科综合注重创新试题设计、挖掘时代主题、构建问题情境,突出地理、思想政治、历史学科所独具的思维与分析方法,对学生学科素养的培养起到积极的推动作用。
地 理
注重反映人地协调观、综合思维和区域认知的价值取向,将地理学思想方法自然、贴切地融入素材。
思想政治
精心选择能够更好地承载学科知识、反映学科特色的素材,贴近学生生活、贴近时代,更好地发挥考试对教学的导向和促进作用。
历史
更加注重考查历史思维过程与方法,如学生对历史事实和历史叙述这两种不同史学概念的理解和辨别程度。
理综:着重考查创新思维和学习能力
理科综合坚持将创新思维和学习能力考查渗透到命题全过程。
化学
增加了化学反应图形和性能关联图形的体裁,让学生在获得化学信息的基础上,回归到基本反应原理和物质结构知识中去。
通过延伸基本知识,在培养学生自学和探究精神方面也进行积极探索。
物理
通过将动量和近代物理作为必考内容进行考查,完善学生的知识结构,为学生解决问题提供更多有力工具,有利于学生更好地认识实际现象,理解更深层次问题。
生物
要求学生能够对生物学问题进行探究,包括提出问题、做出假设、制定和实施计划、得出结论、科学表达等;同时,要求学生具备实验设计、实验结果预测的能力。
急啊,拜托各位了!!某钟表在7月29日零点比标准时间慢4分钟半,它
[专题介绍]
钟面上有时针与分针,每针转动的速度是确定的。
分针每分钟旋转的速度: 360°÷60=6°
时针每分钟旋转的速度: 360°÷(12×60)=0.5°
在钟面上总是分针追赶时针的局面,或是分针超越时针的局面。这里的转动角度用度数来表示,相当于行走的路程。因此钟面上两针的运动是一类典型的追及行程问题。
[经典例题]
例1 钟面上3时多少分时,分针与时针恰好重合?
分析正3时时,分针在12的位置上,时针在3的位置上,两针相隔90°。当两针第一次重合,就是3时过多少分。在正3时到两针重合的这段时间内,分针要比时针多行走90°。而可知每分钟分针比时针多行走6-0.5=5.5(度)。相应的所用的时间就很容易计算出来了。
解 360÷12×3= 90(度)
90÷(6-0.5)= 90÷5.5≈16.36(分)
答两针重合时约为3时16.36分。
例2 在钟面上5时多少分时,分针与时针在一条直线上,而指向相反?
分析在正5时时,时针与分针相隔150°。然后随时间的消逝,分针先是追上时针,在此时间内,分针需比时针多行走150°,然后超越时针180°就成一条直线且指向相反了。
解 360÷12×5=150(度)
(150+ 180)÷(6— 0.5)= 60(分)
5时60分即6时正。
答分针与时针在同一条直线上且指向相反时应是5时60分,即6时正。
例3 钟面上12时30分时,时针在分针后面多少度?
分析要避免粗心的考虑:时针在分针后面180°。正12时时,分针与时针重合,相当于在同一起跑线上。当到12时30分钟时,分针走了180°到达6时的位置上。而时针在同样的30分钟内也在行走。实际上两针相隔的度数是在30分钟内分针超越时针的度数。
解 (6—0.5)×30=55×3=165(度)
答时针在分针后面165度。
例4 钟面上6时到7时之间两针相隔90°时,是几时几分?
分析从6时正作为起点,此时两针成180°。当分针在时针后面90°时或分针超越时针90°时,就是所求的时刻。
解 (180—90)÷(6—0.5)
=90 ÷5.5
≈16.36(分钟)
(180+ 90)÷(6— 0.5)
=270÷5.5
≈49.09(分钟)
答两针相隔90°时约为6时16.36分,或约为6时49.09分。
1、 从时针指向4开始,再经过多少分钟,时针正好和分针重合?
解答:钟表问题实际是追及行程,分针1分钟走1格,时针1分钟走1/12,4点整,相差20格,则20÷(1-1/12)=21又9/11
答:再经过21又9/11分钟,时针正好和分针重合。
2、 4时与5时之间,什么时刻时钟的分针和时针成一直线?
解答:分针和时针成一直线,分针比时针多走 50格,每分钟
多走 1- 1/12=11/12格,则50÷11/12=54又6/11分
答: 4点54又6/11分时钟的分针和时针成一直线.
3、 有一个挂钟,每小时敲一次钟,几点钟就敲几下,钟敲6下,5秒钟敲完,钟敲12下,几秒钟可敲完?
解答:钟敲6下,有6个间隔,5秒钟敲完,说明一个间隔用时1秒,钟敲12下,有11个间隔,因此用时11秒.
4、当钟面上4时10分时,时针与分针的夹角是多少度?
解答:分针每分钟走360÷60=6度,时针每分钟走30度÷60=0.5度,4点整分针与时针相差120度,10分钟分针比时针多走(6-0.5)×10=55度,
120度-55度=65度.
5、 一昼夜分的时钟,今天下午4时调拨到几点几分,才能于明天上午8时指向正确的时刻?
7、 8时到9时之间,在什么时刻时针与分针的夹角是60度?
8、 张奶奶家的闹钟每小时快2分(准确的钟分针每小时走一圈,而这个钟的分针每小时走一圈多2格)。昨晚21:00,她把闹钟与北京时间对准了,同时把钟拨到今天早晨6:00闹铃,张姐姐听到闹铃声响比北京时间今天早晨6:00提前了多少小时?
9、 在7时和8时之间,什么时刻时针与分针成直角?
10、 某人有一只手表,比家里闹钟时间每小时0秒,而闹钟却比标准时间每小时慢30秒。此人手表一昼夜与标准时间相差多少秒?
11、 5时以后的什么时刻,时针和分针在“4”字两边并且与“4”字等距离?
12、 一只钟的时针和分针每65分钟重合一次,这只针一天慢或快几分?
13、有甲乙两只钟表,甲表8时15分时,乙表8时31分。甲表比标准时间每9小时分,乙表比标准时间每7小时慢5分。至少要经过几小时,两种表的指针指在同一时刻?
14、 某种表在7月29日零点比标准时间慢4分半,它一直走到8月5号上午7时,比标准时间分。那么,这只钟所指的正确的时刻是几月几日几时?
解析
标准时间从 7月29日零点走到8月5日上午7时共走了7*24*60+7*60=10500分
而坏钟表从7月29日零点比标准时间慢4分半,它一直走到8月5日上午7时,比标准时间分共走了:10507.5分
所以坏钟表每走10507.5/7.5=1401分追上标准时间1分
所以共需4.5个1401追上标准时间
标准时间走4.5个1400分即4.5*1400=6300分后和坏钟表时刻一致。6300/60/24=35/8天=4天12小时
标准时间从7月29日零点开始走4天12小时就是:
这只表所指时间是正确的时刻在8月2日12时4分30秒
高三数学
高考数学基础知识汇总
第一部分 集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;
(2) 注意:讨论的时候不要遗忘了 的情况。
(3)
第二部分 函数与导数
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;
⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、 、 等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数 分解为基本函数:内函数 与外函数 ;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵ 是奇函数 ;
⑶ 是偶函数 ;
⑷奇函数 在原点有定义,则 ;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
① 在区间 上是增函数 当 时有 ;
② 在区间 上是减函数 当 时有 ;
⑵单调性的判定
1 定义法:
注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;
②导数法(见导数部分);
③复合函数法(见2 (2));
④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:
对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期
① ;② ;③ ;
④ ;⑤ ;
⑶函数周期的判定
①定义法(试值) ②图像法 ③公式法(利用(2)中结论)
⑷与周期有关的结论
① 或 的周期为 ;
② 的图象关于点 中心对称 周期为2 ;
③ 的图象关于直线 轴对称 周期为2 ;
④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;
8.基本初等函数的图像与性质
⑴幂函数: ( ;⑵指数函数: ;
⑶对数函数: ;⑷正弦函数: ;
⑸余弦函数: ;(6)正切函数: ;⑺一元二次函数: ;
⑻其它常用函数:
1 正比例函数: ;②反比例函数: ;特别的
2 函数 ;
9.二次函数:
⑴解析式:
①一般式: ;②顶点式: , 为顶点;
③零点式: 。
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。
10.函数图象:
⑴图象作法 :①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换:
1 平移变换:ⅰ ,2 ———“正左负右”
ⅱ ———“正上负下”;
3 伸缩变换:
ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;
ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;
4 对称变换:ⅰ ;ⅱ ;
ⅲ ; ⅳ ;
5 翻转变换:
ⅰ ———右不动,右向左翻( 在 左侧图象去掉);
ⅱ ———上不动,下向上翻(| |在 下面无图象);
11.函数图象(曲线)对称性的证明
(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;
特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
12.函数零点的求法:
⑴直接法(求 的根);⑵图象法;⑶二分法.
13.导数
⑴导数定义:f(x)在点x0处的导数记作 ;
⑵常见函数的导数公式: ① ;② ;③ ;
④ ;⑤ ;⑥ ;⑦ ;
⑧ 。
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ 是增函数;ⅱ 为减函数;
ⅲ 为常数;
③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。
④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)定积分
⑴定积分的定义:
⑵定积分的性质:① ( 常数);
② ;
③ (其中 。
⑶微积分基本定理(牛顿—莱布尼兹公式):
⑷定积分的应用:①求曲边梯形的面积: ;
3 求变速直线运动的路程: ;③求变力做功: 。
第三部分 三角函数、三角恒等变换与解三角形
1.⑴角度制与弧度制的互化: 弧度 , 弧度, 弧度
⑵弧长公式: ;扇形面积公式: 。
2.三角函数定义:角 中边上任意一点 为 ,设 则:
3.三角函数符号规律:一全正,二正弦,三两切,四余弦;
4.诱导公式记忆规律:“函数名不(改)变,符号看象限”;
5.⑴ 对称轴: ;对称中心: ;
⑵ 对称轴: ;对称中心: ;
6.同角三角函数的基本关系: ;
7.两角和与差的正弦、余弦、正切公式:①
② ③ 。
8.二倍角公式:① ;
② ;③ 。
9.正、余弦定理:
⑴正弦定理: ( 是 外接圆直径 )
注:① ;② ;③ 。
⑵余弦定理: 等三个;注: 等三个。
10。几个公式:
⑴三角形面积公式: ;
⑵内切圆半径r= ;外接圆直径2R=
11.已知 时三角形解的个数的判定:
第四部分 立体几何
1.三视图与直观图:注:原图形与直观图面积之比为 。
2.表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:
⑶台体:①表面积:S=S侧+S上底S下底;②侧面积:S侧= ;③体积:V= (S+ )h;
⑷球体:①表面积:S= ;②体积:V= 。
3.位置关系的证明(主要方法):
⑴直线与直线平行:①公理4;②线面平行的性质定理;③面面平行的性质定理。
⑵直线与平面平行:①线面平行的判定定理;②面面平行 线面平行。
⑶平面与平面平行:①面面平行的判定定理及推论;②垂直于同一直线的两平面平行。
⑷直线与平面垂直:①直线与平面垂直的判定定理;②面面垂直的性质定理。
⑸平面与平面垂直:①定义---两平面所成二面角为直角;②面面垂直的判定定理。
注:理科还可用向量法。
4.求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角)
⑴异面直线所成角的求法:
1 平移法:平移直线,2 构造三角形;
3 ②补形法:补成正方体、平行六面体、长方体等,4 发现两条异面直线间的关系。
注:理科还可用向量法,转化为两直线方向向量的夹角。
⑵直线与平面所成的角:
①直接法(利用线面角定义);②先求斜线上的点到平面距离h,与斜线段长度作比,得sin 。
注:理科还可用向量法,转化为直线的方向向量与平面法向量的夹角。
⑶二面角的求法:
①定义法:在二面角的棱上取一点(特殊点),作出平面角,再求解;
②三垂线法:由一个半面内一点作(或找)到另一个半平面的垂线,用三垂线定理或逆定理作出二面角的平面角,再求解;
③射影法:利用面积射影公式: ,其中 为平面角的大小;
注:对于没有给出棱的二面角,应先作出棱,然后再选用上述方法;
理科还可用向量法,转化为两个班平面法向量的夹角。
5.求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离)
⑴两异面直线间的距离:一般先作出公垂线段,再进行计算;
⑵点到直线的距离:一般用三垂线定理作出垂线段,再求解;
⑶点到平面的距离:
①垂面法:借助面面垂直的性质作垂线段(确定已知面的垂面是关键),再求解;
5 等体积法;
理科还可用向量法: 。
⑷球面距离:(步骤)
(Ⅰ)求线段AB的长;(Ⅱ)求球心角∠AOB的弧度数;(Ⅲ)求劣弧AB的长。
6.结论:
⑴从一点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上的射影在∠BOC的平分线上;
⑵立平斜公式(最小角定理公式):
⑶正棱锥的各侧面与底面所成的角相等,记为 ,则S侧cos =S底;
⑷长方体的性质
①长方体体对角线与过同一顶点的三条棱所成的角分别为 则:cos2 +cos2 +cos2 =1;sin2 +sin2 +sin2 =2 。
②长方体体对角线与过同一顶点的三侧面所成的角分别为 则有cos2 +cos2 +cos2 =2;sin2 +sin2 +sin2 =1 。
⑸正四面体的性质:设棱长为 ,则正四面体的:
1 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内切2 球半径: ;外接球半径: ;
第五部分 直线与圆
1.直线方程
⑴点斜式: ;⑵斜截式: ;⑶截距式: ;
⑷两点式: ;⑸一般式: ,(A,B不全为0)。
(直线的方向向量:( ,法向量(
2.求解线性规划问题的步骤是:
(1)列约束条件;(2)作可行域,写目标函数;(3)确定目标函数的最优解。
3.两条直线的位置关系:
4.直线系
5.几个公式
⑴设A(x1,y1)、B(x2,y2)、C(x3,y3),⊿ABC的重心G:( );
⑵点P(x0,y0)到直线Ax+By+C=0的距离: ;
⑶两条平行线Ax+By+C1=0与 Ax+By+C2=0的距离是 ;
6.圆的方程:
⑴标准方程:① ;② 。
⑵一般方程: (
注:Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆 A=C≠0且B=0且D2+E2-4AF>0;
7.圆的方程的求法:⑴待定系数法;⑵几何法;⑶圆系法。
8.圆系:
⑴ ;
注:当 时表示两圆交线。
⑵ 。
9.点、直线与圆的位置关系:(主要掌握几何法)
⑴点与圆的位置关系:( 表示点到圆心的距离)
① 点在圆上;② 点在圆内;③ 点在圆外。
⑵直线与圆的位置关系:( 表示圆心到直线的距离)
① 相切;② 相交;③ 相离。
⑶圆与圆的位置关系:( 表示圆心距, 表示两圆半径,且 )
① 相离;② 外切;③ 相交;
④ 内切;⑤ 内含。
10.与圆有关的结论:
⑴过圆x2+y2=r2上的点M(x0,y0)的切线方程为:x0x+y0y=r2;
过圆(x-a)2+(y-b)2=r2上的点M(x0,y0)的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2;
⑵以A(x1,y2)、B(x2,y2)为直径的圆的方程:(x-x1)(x-x2)+(y-y1)(y-y2)=0。
第六部分 圆锥曲线
1.定义:⑴椭圆: ;
⑵双曲线: ;⑶抛物线:略
2.结论
⑴焦半径:①椭圆: (e为离心率); (左“+”右“-”);
②抛物线:
⑵弦长公式:
注:(Ⅰ)焦点弦长:①椭圆: ;②抛物线: =x1+x2+p= ;(Ⅱ)通径(最短弦):①椭圆、双曲线: ;②抛物线:2p。
⑶过两点的椭圆、双曲线标准方程可设为: ( 同时大于0时表示椭圆, 时表示双曲线);
⑷椭圆中的结论:
①内接矩形最大面积 :2ab;
②P,Q为椭圆上任意两点,且OP 0Q,则 ;
③椭圆焦点三角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内心, 交 于点 ,则 ;
④当点 与椭圆短轴顶点重合时 最大;
⑸双曲线中的结论:
①双曲线 (a>0,b>0)的渐近线: ;
②共渐进线 的双曲线标准方程为 为参数, ≠0);
③双曲线焦点三角形:<Ⅰ>. ,( );<Ⅱ>.P是双曲线 - =1(a>0,b>0)的左(右)支上一点,F1、F2分别为左、右焦点,则△PF1F2的内切圆的圆心横坐标为 ;
④双曲线为等轴双曲线 渐近线为 渐近线互相垂直;
(6)抛物线中的结论:
①抛物线y2=2px(p>0)的焦点弦AB性质:<Ⅰ>. x1x2= ;y1y2=-p2;
<Ⅱ>. ;<Ⅲ>.以AB为直径的圆与准线相切;<Ⅳ>.以AF(或BF)为直径的圆与 轴相切;<Ⅴ>. 。
②抛物线y2=2px(p>0)内结直角三角形OAB的性质:
<Ⅰ>. ; <Ⅱ>. 恒过定点 ;
<Ⅲ>. 中点轨迹方程: ;<Ⅳ>. ,则 轨迹方程为: ;<Ⅴ>. 。
③抛物线y2=2px(p>0),对称轴上一定点 ,则:
<Ⅰ>.当 时,顶点到点A距离最小,最小值为 ;<Ⅱ>.当 时,抛物线上有关于 轴对称的两点到点A距离最小,最小值为 。
3.直线与圆锥曲线问题解法:
⑴直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解。
注意以下问题:
①联立的关于“ ”还是关于“ ”的一元二次方程?
②直线斜率不存在时考虑了吗?
③判别式验证了吗?
⑵设而不求(代点相减法):--------处理弦中点问题
步骤如下:①设点A(x1,y1)、B(x2,y2);②作差得 ;③解决问题。
4.求轨迹的常用方法:(1)定义法:利用圆锥曲线的定义; (2)直接法(列等式);(3)代入法(相关点法或转移法);⑷待定系数法;(5)参数法;(6)交轨法。
第七部分 平面向量
⑴设a=(x1,y1),b=(x2,y2),则: ① a‖b(b≠0) a= b ( x1y2-x2y1=0;
② a⊥b(a、b≠0) a?b=0 x1x2+y1y2=0 .
⑵a?b=|a||b|cos<a,b>=x2+y1y2;
注:①|a|cos<a,b>叫做a在b方向上的投影;|b|cos<a,b>叫做b在a方向上的投影;
6 a?b的几何意义:a?b等于|a|与|b|在a方向上的投影|b|cos<a,b>的乘积。
⑶cos<a,b>= ;
⑷三点共线的充要条件:P,A,B三点共线 ;
附:(理科)P,A,B,C四点共面 。
第八部分 数列
1.定义:
⑴等差数列 ;
⑵等比数列
2.等差、等比数列性质
等差数列 等比数列
通项公式
前n项和
性质 ①an=am+ (n-m)d, ①an=amqn-m;
②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq
③ 成AP ③ 成GP
④ 成AP, ④ 成GP,
等差数列特有性质:
1 项数为2n时:S2n=n(an+an+1)=n(a1+a2n); ; ;
2 项数为2n-1时:S2n-1=(2n-1) ; ; ;
3 若 ;若 ;
若 。
3.数列通项的求法:
⑴分析法;⑵定义法(利用AP,GP的定义);⑶公式法:累加法( ;
⑷叠乘法( 型);⑸构造法( 型);(6)迭代法;
⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。
注:当遇到 时,要分奇数项偶数项讨论,结果是分段形式。
4.前 项和的求法:
⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。
5.等差数列前n项和最值的求法:
⑴ ;⑵利用二次函数的图象与性质。
第九部分 不等式
1.均值不等式:
注意:①一正二定三相等;②变形, 。
2.绝对值不等式:
3.不等式的性质:
⑴ ;⑵ ;⑶ ;
;⑷ ; ;
;⑸ ;(6)
4.不等式等证明(主要)方法:
⑴比较法:作差或作比;⑵综合法;⑶分析法。
第十部分 复数
1.概念:
⑴z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
⑵z=a+bi是虚数 b≠0(a,b∈R);
⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
⑷a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.复数的代数形式及其运算:设z1= a + bi , z2 = c + di (a,b,c,d∈R),则:
(1) z 1± z2 = (a + b) ± (c + d)i;⑵ z1.z2 = (a+bi)?(c+di)=(ac-bd)+ (ad+bc)i;⑶z1÷z2 = (z2≠0) ;
3.几个重要的结论:
;⑶ ;⑷
⑸ 性质:T=4; ;
(6) 以3为周期,且 ; =0;
(7) 。
4.运算律:(1)
5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;
第十一部分 概率
1.事件的关系:
⑴事件B包含事件A:事件A发生,事件B一定发生,记作 ;
⑵事件A与事件B相等:若 ,则事件A与B相等,记作A=B;
⑶并(和)事件:某事件发生,当且仅当事件A发生或B发生,记作 (或 );
⑷并(积)事件:某事件发生,当且仅当事件A发生且B发生,记作 (或 ) ;
⑸事件A与事件B互斥:若 为不可能事件( ),则事件A与互斥;
(6)对立事件: 为不可能事件, 为必然事件,则A与B互为对立事件。
2.概率公式:
⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);
⑵古典概型: ;
⑶几何概型: ;
第十二部分 统计与统计案例
1.抽样方法
⑴简单随机抽样:一般地,设一个总体的个数为N,通过逐个不放回的方法从中抽取一个容量为n的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
注:①每个个体被抽到的概率为 ;
②常用的简单随机抽样方法有:抽签法;随机数法。
⑵系统抽样:当总体个数较多时,可将总体均衡的分成几个部分,然后按照预先制定的
规则,从每一个部分抽取一个个体,得到所需样本,这种抽样方法叫系统抽样。
注:步骤:①编号;②分段;③在第一段采用简单随机抽样方法确定其时个体编号 ;
④按预先制定的规则抽取样本。
⑶分层抽样:当已知总体有差异比较明显的几部分组成时,为使样本更充分的反映总体的情况,将总体分成几部分,然后按照各部分占总体的比例进行抽样,这种抽样叫分层抽样。
注:每个部分所抽取的样本个体数=该部分个体数
2.总体特征数的估计:
⑴样本平均数 ;
⑵样本方差 ;
⑶样本标准差 = ;
3.相关系数(判定两个变量线性相关性):
注:⑴ >0时,变量 正相关; <0时,变量 负相关;
⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。
4.回归分析中回归效果的判定:
⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。
注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;
② 越接近于1,,则回归效果越好。
5.独立性检验(分类变量关系):
随机变量 越大,说明两个分类变量,关系越强,反之,越弱。
第十四部分 常用逻辑用语与推理证明
1. 四种命题:
⑴原命题:若p则q; ⑵逆命题:若q则p;
⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:原命题与逆否命题等价;逆命题与否命题等价。
2.充要条件的判断:
(1)定义法----正、反方向推理;
(2)利用集合间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;
3.逻辑连接词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真 真 真 真 假
⑶非(not):命题形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
4.全称量词与存在量词
⑴全称量词-------“所有的”、“任意一个”等,用 表示;
全称命题p: ;
全称命题p的否定 p: 。
⑵存在量词--------“存在一个”、“至少有一个”等,用 表示;
特称命题p: ;
特称命题p的否定 p: ;
第十五部分 推理与证明
1.推理:
⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
注:类比推理是特殊到特殊的推理。
⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
注:演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:
⑴大前提---------已知的一般结论;
⑵小前提---------所研究的特殊情况;
⑶结 论---------根据一般原理,对特殊情况得出的判断。
二.证明
⒈直接证明
⑴综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。
⑵分析法
一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。分析法又叫逆推证法或执果索因法。
2.间接证明------反证法
一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。
附:数学归纳法(仅限理科)
一般的证明一个与正整数 有关的一个命题,可按以下步骤进行:
⑴证明当 取第一个值 是命题成立;
⑵假设当 命题成立,证明当 时命题也成立。
那么由⑴⑵就可以判定命题对从 开始所有的正整数都成立。
这种证明方法叫数学归纳法。
注:①数学归纳法的两个步骤缺一不可,用数学归纳法证明问题时必须严格按步骤进行;
3 的取值视题目而4 定,5 可能是1,6 也可能是2等。
第十六部分 理科选修部分
1. 排列、组合和二项式定理
⑴排列数公式: =n(n-1)(n-2)…(n-m+1)= (m≤n,m、n∈N*),当m=n时为全排列 =n(n-1)(n-2)…3.2.1=n!;
⑵组合数公式: (m≤n), ;
⑶组合数性质: ;
⑷二项式定理:
①通项: ②注意二项式系数与系数的区别;
⑸二项式系数的性质:
①与首末两端等距离的二项式系数相等;②若n为偶数,中间一项(第 +1项)二项式系数最大;若n为奇数,中间两项(第 和 +1项)二项式系数最大;
③
(6)求二项展开式各项系数和或奇(偶)数项系数和时,注意运用赋值法。
2. 概率与统计
⑴随机变量的分布列:
①随机变量分布列的性质:pi≥0,i=1,2,…; p1+p2+…=1;
②离散型随机变量:
X x1 X2 … xn …
P P1 P2 … Pn …
期望:EX= x1p1 + x2p2 + … + xnpn + … ;
方差:DX= ;
注: ;
③两点分布:
X 0 1 期望:EX=p;方差:DX=p(1-p).
P 1-p p
4 超几何分布:
一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则 其中, 。
称分布列
X 0 1 … m
P …
为超几何分布列, 称X服从超几何分布。
⑤二项分布(独立重复试验):
若X~B(n,p),则EX=np, DX=np(1- p);注: 。
⑵条件概率:称 为在事件A发生的条件下,事件B发生的概率。
注:①0 P(B|A) 1;②P(B∪C|A)=P(B|A)+P(C|A)。
⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。
⑷正态总体的概率密度函数: 式中 是参数,分别表示总体的平均数(期望值)与标准差;
(6)正态曲线的性质:
①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,关于直线x= 对称;
③曲线在x= 处达到峰值 ;④曲线与x轴之间的面积为1;
5 当 一定时,6 曲线随 质的变化沿x轴平移;
7 当 一定时,8 曲线形状由 确定: 越大,9 曲线越“矮胖”,10 表示总体分布越集中;
越小,曲线越“高瘦”,表示总体分布越分散。
注:P =0.6826;P =0.9544
P =0.9974
欢迎采纳 祝你幸福
高一数学教案用二分法求方程的近似解
学习目标
1. 根据具体函数图象,能够借助计算器用二分法求相应方程的近似解;
2. 通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.
旧知提示 (预习教材P89~ P91,找出疑惑之处)
复习1:什么叫零点?零点的等价性?零点存在性定理?
对于函数 ,我们把使 的实数x叫做函数 的零点.
方程 有实数根 函数 的图象与x轴 函数 .
如果函数 在区间 上的图象是连续不断的一条曲线,并且有 ,那么,函数 在区间 内有零点.
复习2:一元二次方程求根公式? 三次方程? 四次方程?
合作探究
探究:有12个小球,质量均匀,只有一个是比别的球重的,你用天平称几次可以找出这个球的,要求次数越少越好.
解法:第一次,两端各放 个球,低的那一端一定有重球;
第二次,两端各放 个球,低的那一端一定有重球;
第三次,两端各放 个球,如果平衡,剩下的就是重球,否则,低的就是重球.
思考:以上的方法其实这就是一种二分法的思想,采用类似的方法,如何求 的零点所在区间?如何找出这个零点?
新知:二分法的思想及步骤
对于在区间 上连续不断且 0的函数 ,通过不断的把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法(bisection).
反思: 给定精度,用二分法求函数 的零点近似值的步骤如何呢?
①确定区间 ,验证 ,给定精度
②求区间 的中点 ;[]
③计算 : 若 ,则 就是函数的零点; 若 ,则令 (此时零点 ); 若 ,则令 (此时零点 );
④判断是否达到精度即若 ,则得到零点零点值a(或b);否则重复步骤②~④.
典型例题
例1 借助计算器或计算机,利用二分法求方程 的近似解.
练1. 求方程 的解的个数及其大致所在区间.
练2.求函数 的一个正数零点(精确到 )
零点所在区间 中点函数值符号 区间长度
练3. 用二分法求 的近似值.
课堂小结
① 二分法的概念;②二分法步骤;③二分法思想.
知识拓展
高次多项式方程公式解的探索史料
在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点近似解的方法,这是一个在计算数学中十分重要的课题.
学习评价
1. 若函数 在区间 上为减函数,则 在 上( ).
A. 至少有一个零点 B. 只有一个零点
C. 没有零点 D. 至多有一个零点
2. 下列函数图象与 轴均有交点,其中不能用二分法求函数零点近似值的是().
3. 函数 的零点所在区间为( ).
A. B. C. D.
4. 用二分法求方程 在区间[2,3]内的实根,由计算器可算得 , , ,那么下一个有根区间为 .
课后作业
1.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为()
A.-1 B.0 C.3 D.不确定
2.已知f(x)=-x-x3,x[a,b],且f(a)f(b)0,则f(x)=0在[a,b]内()
A.至少有一实数根 B.至多有一实数根
C.没有实数根 D.有惟一实数根
3.设函数f(x)=13x-lnx(x0)则y=f(x)()
A.在区间1e,1,(1,e)内均有零点 B.在区间1e,1, (1,e)内均无零点
C.在区间1e,1内有零点;在区间(1,e)内无零点[]
D.在区间1e,1内无零点,在区间(1,e)内有零点
4.函数f(x)=ex+x-2的零点所在的一个区间是()
A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
5.若方程x2-3x+mx+m=0的两根均在(0,+)内,则m的取值范围是()
A.m1 B.01 D.0
6.函数f(x)=(x-1)ln(x-2)x-3的零点有()
A.0个 B.1个 C.2个 D.3个
7.函数y=3x-1x2的一个零点是()
A.-1 B.1 C.(-1,0) D.(1,0)
8.函数f(x)=ax2+bx+c,若f(1)0,f(2)0,则f(x)在(1,2)上零点的个数为( )
A.至多有一个 B.有一个或两个 C.有且仅有一个 D.一个也没有
9.根据表格中的数据,可以判定方程ex-x-2=0的一个根所在的区间为()
x -1 0 1 2 3
ex 0.37 1 2.72 7.39 20.09
A.(-1,0) B.(0,1) C.(1,2) D.(2,3)
10.求函数y=x3-2x2-x+2的零点,并画出它的简图.
总结
20xx年数学网为我在此为您收集了此文章高一数学教案:用二分法求方程的近似解,今后还会发布更多更好的文章希望对大家有所帮助,祝您在数学网学习愉快!