您现在的位置是: 首页 > 教育趋势 教育趋势
2014年高考数学满分多少,2014高考数学技巧
tamoadmin 2024-05-30 人已围观
简介1.高考数学考试答题技巧及方法 有哪些2.数学高考选择题蒙题技巧3.数学蒙题技巧和方法高考4.2014年高考理科数学试题全国新课标 第21题, 第3问,思路怎么想 ,如图所示,5.高考数学大题的解题技巧及解题思想高考数学提分技巧如下:1、课内重视听讲,课后及时复习。新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预
1.高考数学考试答题技巧及方法 有哪些
2.数学高考选择题蒙题技巧
3.数学蒙题技巧和方法高考
4.2014年高考理科数学试题全国新课标 第21题, 第3问,思路怎么想 ,如图所示,
5.高考数学大题的解题技巧及解题思想
高考数学提分技巧如下:
1、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。
首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。
2、适当多做题,养成良好的解题习惯。
要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
3、调整心态,正确对待考试。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。
特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
高考数学考试答题技巧及方法 有哪些
数学高考答题技巧与答题方法是如下:
1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是。4、选择与填空中出现不等式的题目,优选特殊值法。5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。
数学高考选择题蒙题技巧
1.调整好状态,控制好自我。
(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。
2.通览试卷,树立自信。
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。
3.提高解选择题的速度、填空题的准确度。
数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法?尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4.审题要慢,做题要快,下手要准。
题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
5.保质保量拿下中下等题目。
中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。www.KaO8.C
6.要牢记分段得分的原则,规范答题。
会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。难题要学会:
(1)缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半。
(2)跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以假定某些结论是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。如果方向正确,就回过头来,集中力量攻克这一“卡壳处”。如果时间不允许,那么可以把前面的写下来,再写出“证实某步之后,继续有?”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。今年仍是网上阅卷,望广大考生规范答题,减少隐形失分。
数学蒙题技巧和方法高考
数学高考选择题蒙题技巧如下:
答案有根号的,不选;答案有1的,选;三个答案是正的时候,在正的中选;有一个是正X,一个是负X的时候,在这两个中选:题目看起来数字简单,那么答案选复杂的,反之亦然;上一题选什么,这一题选什么,连续有三个相同的则不适合本条;答题答得好,全靠眼睛瞟:以上都不实用的时候选B。
选择题蒙题技巧:选择与填空中出现不等式的题目,优选特殊值法,选取中间值带入,选取好算易得的;如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法,将各种函数模型牢记于心,每个模型特点也要牢记。
1.理清思路
在做数学选择题时,首先应该确定题目的难度和考点,弄清楚题目中所涉及的概念和关键点。然后进行分类讨论、列方程式、构造图形等步骤,把问题彻底梳理清楚,明确解题思路。
2.排除错误选项
在解答数学选择题时,我们经常会遇到一些看似正确但实际上错误的选项,这时需要注意排除这些错误选项。如果手头没有十分确定的答案,可以通过排除法逐个比较选项,找出不符合规律或结论的选项,再从剩下的选项中寻求正确答案。
3.寻找规律
数学选择题普遍具有一定的规律性,因此在做题时需要留心观察题目特点,寻找其中的规律。这种方法可以帮助我们更快地找到正确答案,减少盲目猜测的风险。
4.注意解题细节
在数学选择题中,有时候答案隐藏在细节之中。因此,在解答选择题时,需要注意每个选项所对应的数值范围、符号、单位标识等关键细节,尤其是面积、角度、坐标等问题。
总结:
数学高考选择题蒙题技巧是在做题过程中通过理清思路、排除错误选项、寻找规律等方法,提高猜测正确答案的几率。合理运用这些技巧不仅可以避免错选,还能提高答题效率,缩短答题时间。同时,建议考生在考试之前充分复习基础知识和习题,做到理论与实践的相结合,才能更好地掌握数学选择题解题技巧。
2014年高考理科数学试题全国新课标 第21题, 第3问,思路怎么想 ,如图所示,
高考数学蒙题技巧和方法有:
高考数学蒙题技巧:
技巧1、高考时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时你就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。
技巧2、在数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。单看选项,一般BD稍多,A较少。还有一点,选了之后就不要改了,除非你有90以上的把握。这个经验堪称是史上最牛的高考数学蒙题技巧。
技巧3、经过历年高考经验总结,高考数学第一题和最后一题一般不会是A!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然!上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选B!
技巧4、数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。
技巧5、超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。如果条件过多,用图像法秒杀。不等式也是特值法图像法。
高考数学蒙题方法:
函数法,这个就是要把一些计算转化为函数,首先带入答案,之后移项,把方程一边变成零,然后就可以把函数的表达式大概画出来,看与零点有没有唯一焦点,这样就可以大概判断答案,或者找最接近零点的答案!
经验法:在排序或者有规律的题目也使用。首先比如求三角形面积。你看答案里a:12,b,13,c:6,d:11.第一,12,13,11明显是拼凑的错误答案。第二肯定有陷阱是三角形面积忘记除以2,所以c的答案正确率高。还有一些答案,前几个是重复的,就像下面的图一样,不会就选重复答案多的那几个!1,2重复答案为两个,c,d最可能。
如果,实在找不到任何方法,那就看答案,有共同公约数的一般是有正确答案。一般那些和其他三项不会有任何相似的答案,一般就是错的。可以直接排除,找答案其实就是找不同。看参透作者的想法,考虑题目想设置什么陷阱,去排除一些无关的答案。
高考数学大题的解题技巧及解题思想
由第二问,设e^(x/2)=m,可以得到g(x)的导数是:(m-1/m)^2*{2(m+1/m)^2-4b},令g(x)的导数为0,可以得到:1,x=0时,g(x)的导数为0,g(x)为0;2,m1=((2b)^0.5-(2b-4)^0.5)/2,m2=((2b)^0.5+(2b-4)^0.5)/2;如果m1<m<m2时,导数小于0,而m1<1,m2>1,如果换算成x的定义域的话,x1<0,x2>0,所以有函数g(x)在0~x2之间是小于零的。我们要求ln2的值,已知2^0.5的值,所以将x2的值定为特殊值,由e^(x/2)=m2解出x=2lnm2=ln(m2)^2=ln(b-1+(b*b-2b)^0.5);夹逼ln2.将ln2^0.5带入g(x),当b取不同值的时候,可以得到不等式,同时考虑带入2^0.5的值,x=ln2^0.5
解题技巧
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方差、标准差公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
5.注意计数时利用列举、树图等基本方法;
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式;
9.注意平均分组、不完全平均分组问题。
五、圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3.战术上整体思路要保7分,争9分,想12分。
六、导数、极值、最值、不等式恒成立(或逆用求参)问题
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2.注意最后一问有应用前面结论的意识;
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6.整体思路上保6分,争10分,想14分。
解题思想
1.函数与方程思想
函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。
2.数形结合思想
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤
极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想
同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数*算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。