您现在的位置是: 首页 > 教育趋势 教育趋势

高考文科数学题及答案解析_高考文科数学题型归纳

tamoadmin 2024-06-05 人已围观

简介1.高考文科数学考什么?2.求高考文科数学大题的几个板块。3.高考文科数学知识点总结归纳4.高三数学有哪些题型?5.湖南高考数学知识点总结6.高中文科数学高考范围有哪些?2022年高考文科数学考试范围:①单项选择考试范围集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。②多项选择考试范围解析几何(双曲线)、三角函数、不等式应

1.高考文科数学考什么?

2.求高考文科数学大题的几个板块。

3.高考文科数学知识点总结归纳

4.高三数学有哪些题型?

5.湖南高考数学知识点总结

6.高中文科数学高考范围有哪些?

高考文科数学题及答案解析_高考文科数学题型归纳

2022年高考文科数学考试范围:

①单项选择考试范围

集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。

②多项选择考试范围

解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。

③填空题考试范围

解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。

④解答题考试范围

三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。

新高考数学重难点分析:

通过分析,我们可以发现,函数与导数是新高考数学全国卷的重要考点,分值也是最高的27分,同学们在复习时一定要抓住重点去进行复习,争取考生们都能考到一个理想的成绩。

高考文科数学考什么?

考试内容不同、题型不同、重点知识点不同等区别。

1、考试内容不同:高考文科数学和理科数学的考试内容有所不同。文科数学主要涉及基本的数学概念、运算、函数与方程、几何等内容,注重数学的应用和解决实际问题的能力。而理科数学则更加注重数学的理论和推导,包括数列与数学归纳法、三角函数与解三角形、微积分等内容。

2、题型不同:文科数学和理科数学的题型也有所区别。文科数学的题型相对较为简单,主要包括选择题、填空题、计算题和简答题等。而理科数学的题型相对较难,包括选择题、填空题、计算题、证明题和应用题等,要更深入的数学理解和推导能力。

3、重点知识点不同:文科数学和理科数学的重点知识点也有所差异。文科数学的重点在于基本的数学概念和运算,如四则运算、代数运算、平面几何等。而理科数学的重点在于数学的理论和推导,如函数与方程、数列与数学归纳法、微积分等。

求高考文科数学大题的几个板块。

高考文科数学试卷和理科数学试卷是不一样的

相对理科数学卷来说,文科数学要简单很多。

文科数学考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4 的“坐标系与参数方程”、“不等式选讲”等2个专题。

理科数学考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的 “坐标系与参数方程”、“不等式选讲”等2个专题。

报了文科,数学也是不能放弃的。物理化学生物可以稍微了解一下。

高考时,除了语文,英语文理科考生是一样考卷,数学和文综(理综)是不一样的。

扩展资料:

每个实行文理分科考试的省份,高考的时候文理数学试卷都是不同的(平时考试文理数学试卷也不同)。

先从考试范围来说,文科数学试卷考察范围没有理科数学试卷的考察范围大。就比如函数导数部分,文科只学基本函数求导,而理科还要学复合函数求导;立体几何部分文科只学空间坐标系,理科还要学空间角证明平行、垂直等位置关系等。

理科数学范围比文科广,试卷难度当然也比文科大。举个例子:文科数学试卷的压轴题理科生能做出来,但是理科数学试卷的压轴题理科生做不出来。

而且文理科数学数学试题的问题也不同,如果考察同一个知识点,文科试题会很直白的问,而理科数学的问题,得通过分析推理才能知道问的什么(夸张好理解,实际情况没有这么夸张的)。

高考文科数学知识点总结归纳

选择题一般第一个,第二个是三角,复数,集合,最后两个选择题最有可能是圆锥曲线和导数,中间几个肯定有一个程序框图,还有数列,线性规划的选择题,如果你做模拟题做的多会发现,第一个答题三角或数列的可能最大,第二题大多是概率与统计,第三题最有可能是立体几何,第四个可能最大的是圆锥曲线,第五个可能最大是导数,三选一建议选坐标系与参数方程,比较容易做

高三数学有哪些题型?

对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。

高考文科数学知识点

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。

文科数学高频必考考点

第一部分:选择与填空

1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);

2.常用逻辑用语(充要条件,全称量词与存在量词的判定);

3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);

4.幂、指、对函数式运算及图像和性质

5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);

6.空间体的三视图及其还原图的表面积和体积;

7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;

8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;

9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);

10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;

11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;

12.向量数量积、坐标运算、向量的几何意义的应用;

13.正余弦定理应用及解三角形;

14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;

15.线性规划的应用;会求目标函数;

16.圆锥曲线的性质应用(特别是会求离心率);

17.导数的几何意义及运算、定积分简单求法

18.复数的概念、四则运算及几何意义;

19.抽象函数的识别与应用;

第二部分:解答题

第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;

第18题:(文)概率与统计(概率与统计相结合型)

(理)离散型随机变量的概率分布列及其数字特征;

第19题:立体几何

①证线面平行垂直;面与面平行垂直

②求空间中角(理科特别是二面角的求法)

③求距离(理科:动态性)空间体体积;

第20题:解析几何(注重思维能力与技巧,减少计算量)

①求曲线轨迹方程(用定义或待定系数法)

②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)

③求定点、定值、最值,求参数取值的问题;

第21题:函数与导数的综合应用

这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想

一般设计三问:

①求待定系数,利用求导讨论确定函数的单调性;

②求参变数取值或函数的最值;

③探究性问题或证不等式恒成立问题。

第22题:三选一:

(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;

(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。

(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。

2018高考文科数学知识点:高中数学知识点 总结

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考文科数学知识点总结

乘法与因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/aX1__X2=c/a注:韦达定理

判别式

b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有一个实根

b2-4ac<0注:方程有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和公式

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理:a/sinA=b/sinB=c/sinC=2R

注:其中R表示三角形的外接圆半径

余弦定理:b2=a2+c2-2accosB

注:角B是边a和边c的夹角

高考文科数学知识点总结相关 文章 :

★ 2022北京卷高考文科数学试题及答案解析

★ 2022全国新高考Ⅰ卷文科数学试题及答案解析

★ 2022年全国新高考1卷数学试题及答案解析

★ 2022全国新高考Ⅱ卷文科数学试题及答案解析

★ 高中导数知识点总结大全

★ 山东2022高考文科数学试题及答案解析

★ 湖北2022高考文科数学试题及答案解析

★ 2022河北高考文科数学试题及答案解析

★ 高中文科数学复习指导与注意事项

★ 2017高考数学三角函数知识点总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

湖南高考数学知识点总结

高考数学大题6大题型是:

1、三角函数、向量、解三角形

(1)三角函数画图、性质、三角恒等变换、和与差公式。

(2)向量的工具性(平面向量背景)。

(3)正弦定理、余弦定理、解三角形背景。

(4)综合题、三角题一般用平面向量进行“包装”,讲究知识的交汇性,或将三角函数与解三角形有机融合。

重视三角恒等变换下的性质探究,重视考查图形图像的变换。

2、概率与统计

(1)古典概型。

(2)茎叶图。

(3)直方图。

(4)回归方程。

(5)(理)概率分布、期望、方差、排列组合。概率题贴近生活、贴近实际,考查等可能 性事件、互斥事件、独立事件的概率计算公 式,难度不算很大。

3、立体几何

(1)平行。

(2)垂直。

(3)角。

(4)利用三视图计算面积与体积。

(5)既可以用传统的几何法,也可以建立空间直角坐标系,利用法向量等。

4、数列

(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。

(2)文理科的区别较大,理科多出现在压轴题位置的卷型,理科注重数学归纳法。

(3)错位相减法、裂项求和法。

(4)应用题。

5、圆锥曲线(椭圆)与圆

(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。

(2)圆的方程,圆与直线的位置关系。

(3)注重椭圆与圆、椭圆与抛物线等的组合题。

6、函数、导数与不等式

(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。

(2)函数是考查的核心内容,与导数结合,基本题型是判断函数的单调性,求函数的最 值(极值),求曲线的切线方程,对参数取值范 围、根的分布的探求,对参数的分 类讨论以及代数推理等等。

(3)利用基本不等式、对勾函数性质。

高中文科数学高考范围有哪些?

考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!

高考文科数学考点总结

第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。

第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计。这部分和我们的生活联络比较大,属应用题。

第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。

第七,解析几何。是高考的难点,运算量大,一般含引数。

 湖南高考文科数学考点一:直线方程

1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

注:①当或时,直线垂直于轴,它的斜率不存在.

②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.

3. ⑴两条直线平行:

∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.

一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且

推论:如果两条直线的倾斜角为则∥.

⑵两条直线垂直:

两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件

4. 直线的交角:

⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.

⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.

5. 过两直线的交点的直线系方程为引数,不包括在内

湖南高考文科数学考点二:轨迹方程

一、求动点的轨迹方程的基本步骤

⒈建立适当的座标系,设出动点M的座标;

⒉写出点M的 *** ;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。

⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

湖南高考文科数学考点三:导数

一、函式的单调性

在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.

f′x≥0?fx在a,b上为增函式.

f′x≤0?fx在a,b上为减函式.

二、函式的极值

1、函式的极小值:

函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.

2、函式的极大值:

函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三、函式的最值

1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.

2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.

四、求可导函式单调区间的一般步骤和方法

1、确定函式fx的定义域;

2、求f′x,令f′x=0,求出它在定义域内的一切实数根;

3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;

4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.

湖南高考文科数学考点四:不等式

1理解不等式的性质及其证明。

导读

不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:

加强化归意识,把比较大小问题转化为实数的运算;

通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;

强化函式的性质在大小比较中的重要作用,加强知识间的联络;

不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a

一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;

对于含参问题的大小比较要注意分类讨论。

2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。

导读

1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。

2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。

3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。

3掌握分析法、综合法、比较法证明的简单不等式。

导读

1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。

2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。

3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。

湖南高考文科数学考点五:几何

1棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

2棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

3棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

4圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

5圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

6圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

7球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:

高中文科数学高考范围有三角函数、向量、概率与统计、立体几何、数列、圆锥曲线、函数、导数与不等式等。

1、三角函数、向量、解三角形

(1)三角函数画图、性质、三角恒等变换、和与差公式。(2)向量的工具性。(3)正弦定理、余弦定理、解三角形背景。

2、概率与统计

(1)古典概型。(2)茎叶图。(3)直方图。(4)回归方程(2x2列联表)。(5)(理)概率分布、期望、方差、排列组合。

3、立体几何

(1)平行。(2)垂直。(3)角a:异面直线角b:(理)二面角、线面角。(4)利用三视图计算面积与体积。

4、数列

(1)等差数列、等比数列、递推数列是考查的热点,数列通项、数列前n项的和以及二者之间的关系。(2)错位相减法、裂项求和法。(3)应用题。

5、圆锥曲线(椭圆)与圆

(1)椭圆为主线,强调圆锥曲线与直线的位置关系,突出韦达定理或差值法。(2)圆的方程,圆与直线的位置关系。

6、函数、导数与不等式

(1)函数是该题型的主体:三次函数,指数函数,对数函数及其复合函数。(2)利用基本不等式、对勾函数性质。

三角函数/数列:一般全国卷第17题会考三角函数或数列题。数列是最简单的题目,或许你觉得它难,但它能放在第一道大题的位置,就说明你不应该丢分。

概率:一般全国卷第18题会考概率题。概率题相对比较简单,也是必须得分的题,主要还是对作图和识图能力考查比较多。

解析几何:一般全国卷第20题会考解析几何题。解析几何也不是难题,只要大家平时努力,这些题目都算是相对简单的。

文章标签: # 数学 # 高考 # 文科