您现在的位置是: 首页 > 教育趋势 教育趋势

高考文数试卷_文数高考题

tamoadmin 2024-06-11 人已围观

简介1.2023安徽高考文综考什么卷子2.2012年广西高考文科数学用哪份试卷3.新高考后高考文理科同数学语文卷吗?4.2023全国甲卷文科数学难度5.高考文科数学试卷和理科数学试卷一样吗?文理科高考数学卷并不一样,理科数学难度远大于文科数学。如果报文科,数理化并不是就可以放弃了,因为还要参与学业水平考试。现行高考方案为“3+X”“3”指“语文、数学、外语”,“X”指由指学生根据自己的意愿,自主从文科

1.2023安徽高考文综考什么卷子

2.2012年广西高考文科数学用哪份试卷

3.新高考后高考文理科同数学语文卷吗?

4.2023全国甲卷文科数学难度

5.高考文科数学试卷和理科数学试卷一样吗?

高考文数试卷_文数高考题

文理科高考数学卷并不一样,理科数学难度远大于文科数学。如果报文科,数理化并不是就可以放弃了,因为还要参与学业水平考试。

现行高考方案为“3+X”

“3”指“语文、数学、外语”,“X”指由指学生根据自己的意愿,自主从文科综合(政治、历史、地理)和理科综合(物理、化学、生物)2个综合科中选择一个考试科目。此方案是目前全国应用最广,最成熟的高考方案。总分750分(语文150分,数学150分,外语150分,文科综合/理科综合300分)。

高中学业水平考试,通称“高中会考”。是为了进一步加快普通高中教育质量监测体系建设,推动普通高中课程改革工作的有效实施和教育教学质量的全面提升,结合各省普通高中教育发展实际,在认真调研论证、广泛征求各方意见的基础上组织相应的考试。

扩展资料:

高考改革:

2014年上半年,教育部将发布总体方案及高考改革等各领域改革实施意见,有条件的省份开始综合改革试点或专项改革试点,2017年,总结成效和经验,推广实施,到2020年,基本形成新的考试招生制度。方案要求,各省(区、市)最迟要在2014年年底前出台本地区具体实施办法。

2014年9月国务院印发了《关于深化考试招生制度改革的实施意见》,《意见》规定,2014年在上海市和浙江省启动了高考综合改革的试点,2017年将全面推进。

政策规定,在实行高考综合改革的省(区、市),计入高校招生录取总成绩的学业水平考试3个科目,由学生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物等科目中自主选择。学生可以在完成必修内容的学习,在对自己的兴趣和优势有一定了解后确定选考科目。

也就是说,将来学生的高考成绩将会是“3+3”模式,除了统一高考的语数外三科外,还要加上自己选择的三科学业水平测试的成绩。从这样的设计看,学生可以根据自己的特长和兴趣进行竞争,“可以文理兼修、文理兼考,使得文理不分科成为了可能。”教育部基础二司司长郑富芝说。

百度百科-普通高等学校招生全国统一考试

百度百科-高中学业水平考试

百度百科-高考改革

2023安徽高考文综考什么卷子

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2012年广西高考文科数学用哪份试卷

2023安徽高考文综用全国乙卷,即全国Ⅰ卷。

全国乙卷考试科目有语文、数学、外语、文科综合(思想政治、历史、地理)或理科综合(物理、化学、生物)。

从2020级起,相关年级各学科教学及高考命题均依据《普通高中课程方案和语文等学科课程标准(2017年版2020年修订)》,数学高考不分文理科。语、数、英试卷结构参考新高考全国卷;理科综合、文科综合试卷结构参考老高考全国卷,不设选考题。?

语文、数学、英语将采用新高考一卷(新高考全国I卷)。文综、理综卷仍然存在,但不考选做题。语文150满分,考试时间150分钟;数学150满分,考试时间120分钟;英语满分150分,考试时间120分钟;文综满分300分,考试时间150分钟;理综满分300分,考试时间150分钟。

拓展知识:

普通高等学校招生全国统一考试:普通高等学校招生全国统一考试(Nationwide Unified Examination for Admissions to General Universities and Colleges),简称“高考”,是合格的高中毕业生或具有同等学历的考生参加的选拔性考试。

普通高等学校招生全国统一考试。教育部要求各省(区、市)考试科目名称与全国统考科目名称相同的必须与全国统考时间安排一致。

参加考试的对象一般是全日制普通高中毕业生和具有同等学历的中华人民共和国公民,招生分理工农医(含体育)、文史(含外语和艺术)两大类。普通高等学校根据考生成绩,按照招生章程计划和扩招,德智体美劳全面衡量,择优录取。

新高考后高考文理科同数学语文卷吗?

2012年普通高等学校招生全国统一考试

文科数学(必修加选修Ⅰ)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页,第Ⅱ卷3至4页。考试结束后,将本卷和答题卡一并交回。

第Ⅰ卷

注意事项:

1. 答题前,考试在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2. 每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3. 第Ⅰ卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项符合题目要求。

一. 选择题

(1) 已知集合A={x︱x是平行四边形},B={x︱x是矩形},C={x︱x是正方形},D{x︱x是菱形},则

(2) 函数y= (x≥-1)的反函数为

(3) 若函数 是偶函数,则 =

(4)已知a为第二象限角,sina= ,则sin2a= (5)椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为

(6)已知数列{an}的前n项和为Sn, a1=1,Sn=2an+1,则sn=

(7)

(7)6位选手依次演讲,其中选手甲不再第一个也不再最后一个演讲,则不同的演讲次序共有

A 240种 B 360种 C480种 D720种

(8)已知正四棱柱ABCD-A1B1C1D1 中,AB=2,CC1= ,E为CC1 的中点,则直线AC1 与平面BED的距离为

(9)△ABC中,AB边的高为CD, |a|=1,|b|=2,则

(10)已知F1、F2为双曲线 C:X2-Y2=2的左、右焦点,点p在c上,|PF1|=2|PF2|,则cos∠F1PF2 =

(11)已知x=lnπ,y=log52 ,z= ,则

A x<y<z Bz<x<y Cz<y<x Dy<z<x

(12) 正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF= ,动点p从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点p第一次碰到E时,p与正方形的边碰撞的次数为

A 8 B 6 C 4 D 3

绝密★启用前

2012 年普通高等学校招生全国统一考试

文科数学(必修 + 选修 Ⅰ )

第Ⅱ卷

注意事项:

1. 答题前,考试在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2. 每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3. 第Ⅰ卷共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项符合题目要求。

二 . 填空题:本大题共 4 小题,每小题 5 分,共 20 分 . 把答案填在题中横线上

(注意:在试题卷上作答无效)

(13) 的展开式中 的系数为____________.

(14) 若x、y满足约束条件 则z = 3x – y 的最小值为_____________.

(15)当函数y=sinx- 取得最大值时,x=_____________.

(16)一直正方体ABCD- 中,E、F分别为 的中点,那么一面直线AE与 所成角的余弦值为____________.

三. 解答题:本大题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤

(17)(本小题满分10分)(注意:在试题卷上作答无效)

△ABC中,内角A、B、C成等差数列,其对边a、b、c满足 ,求A。

(18)(本小题满分12分) (注意:在试题卷上作答无效)

已知数列{ }中, =1,前n项和 。

(Ⅰ)求

(Ⅱ)求 的通项公式。

(19)(本小题满分12分)(注意:在试题卷上作答无效)

如图,四棱锥P-ABCD中,底面ABCD为菱形,PA 底面ABCD,AC= PA=2,E是PC上的一点,PE=2EC。

(I) 证明PC 平面BED;

(II) 设二面角A-PB-C为90°,求PD与平面PBC所成角的大小

(20)(本小题满分12分)(注意:在试题卷上作答无效)

乒乓球比赛规则规定,一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。

(I) 求开球第4次发球时,甲、乙的比分为1比2的概率;

(II) 求开始第5次发球时,甲得分领先的概率。

(21)(本小题满分12分)(注意:在试题卷上作答无效)

已知函数

(I) 讨论f(x)的单调性;

(II) 设f(x)有两个极值点 若过两点 的直线I与x轴的交点在曲线 上,求α的值。

(22)(本小题满分12分)(注意:在试题卷上作答无效)

已知抛物线C: 与圆 有一个公共点A,且在A处两曲线的切线与同一直线

(I) 求r;

(II) 设m、n是异于 且与C及M都相切的两条直线,m、n的交点为D,求D到 的距离。

2023全国甲卷文科数学难度

新高考后,高考文理科的数学和语文试卷是相同的,主要有统一考试内容、统一评分标准、学科特性。

1、统一考试内容

新高考取消了文理分科,数学和语文不再区分文理科,采用统一考试的方式,可以更加客观、公正地评价学生的知识水平,避免由于不同试卷难度不同而产生的评价偏差。

2、统一评分标准

由于数学和语文采用统一考试的方式,评分标准也会是相同的。无论是文科还是理科考生,学生们的数学和语文成绩都会按照相同的标准进行评判,这也更加公正、公平。

3、学科特性

数学和语文作为基础学科,对于所有学生来说都是非常重要的。不仅是学生综合素质的体现,也直接关系到学生的未来发展。那么无论是文科还是理科考生,都需要具备扎实的数学和语文基础。

新高考对于学生的作用

1、提高学生综合素质

新高考强调学生的全面发展,除了传统的知识学习,还注重学生的实践能力、创新精神、团队合作精神等方面的培养。通过多样化的考试方式和评价标准,鼓励学生拓展知识领域、提高实践能力,有助于培养学生的综合素质。

2、增强学生自我认知

新高考是一次考试,更是一次自我认知和自我发现的过程。学生在准备考试的过程中,需要了解自己的兴趣、优势和不足,明确自己的学习目标和发展方向。多样化的考试方式和评价标准也让学生更加清晰地认识自己的优点和不足,有助于增强学生的自我认知。

3、提升学生未来竞争力

新高考的实施,改变了考试形式,还改变了学生的学习方式和思维方式。学生需要具备更加全面的知识和能力,才能更好地适应未来的社会发展。新高考也为学生提供了更多的选择机会和自主权,有助于提升学生的自我管理和自我发展能力。

高考文科数学试卷和理科数学试卷一样吗?

2023全国甲卷高考文科数学试题不难。

甲卷数学2023文科总体来说不难(相对于绝大多数中等生来说)。本身文科的数学就相对理科数学简单一点。如果是妥妥的学霸,什么样的试题都不难,如果是学渣,什么样的试题都难

从历年纵向比较,全国甲卷高考文科数学试题难度变化相差不大,但阅读量和计算量确实相较于往年有所增加,全国甲卷高考文科数学试卷设置上大都以常见的备考题型为主,选填难度不大,但个别题目有较大的计算量。

据某位考生说今年高考全国甲卷的数学题目,我愿意称之为全国最难的一张试卷,它可以难到什么地步?让你从头到尾,几乎找不到会做的题目。我平时的数学成绩,是我引以为傲的一个科目,经常能考个120分左右,今年可能都不一定能考够80分。

2023文科上一本最低需要多少分呢?

2023大部分地区文科一本分数线在530左右。文科生的一本上线率大概是5%左右,在所有的文科生中,你需要考到全省前5%,才可以被一本录取。

各省高考政策不同,录取批次不同,分数线差异很大。大部分地区文科一本分数线在530左右,合并本科录取批次以及个别发展中地区,一本分数线文科在480左右。

总之,一本分数线各省情况不同,甚至有很大差异,同学们要想对自己所在地区一本文理科分数线有更为准确的预估,可参考当地近几年分数线进行预测,当然前提是当地政策没有改变,比如本科录取批次近几年没有合并,高考试卷最好也没有换过,同时尽量在高考报名人数或招生计划上也不要有太大的变化,这样才能更准确的预估分数线。

高考文科数学试卷和理科数学试卷是不一样的

相对理科数学卷来说,文科数学要简单很多。

文科数学考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4 的“坐标系与参数方程”、“不等式选讲”等2个专题。

理科数学考试范围包括必考内容和选考内容两部分。必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的 “坐标系与参数方程”、“不等式选讲”等2个专题。

报了文科,数学也是不能放弃的。物理化学生物可以稍微了解一下。

高考时,除了语文,英语文理科考生是一样考卷,数学和文综(理综)是不一样的。

扩展资料:

每个实行文理分科考试的省份,高考的时候文理数学试卷都是不同的(平时考试文理数学试卷也不同)。

先从考试范围来说,文科数学试卷考察范围没有理科数学试卷的考察范围大。就比如函数导数部分,文科只学基本函数求导,而理科还要学复合函数求导;立体几何部分文科只学空间坐标系,理科还要学空间角证明平行、垂直等位置关系等。

理科数学范围比文科广,试卷难度当然也比文科大。举个例子:文科数学试卷的压轴题理科生能做出来,但是理科数学试卷的压轴题理科生做不出来。

而且文理科数学数学试题的问题也不同,如果考察同一个知识点,文科试题会很直白的问,而理科数学的问题,得通过分析推理才能知道问的什么(夸张好理解,实际情况没有这么夸张的)。

文章标签: # 高考 # 数学 # 考试