您现在的位置是: 首页 > 教育新闻 教育新闻

四川高考数学试卷2021答案,四川高考数学试卷答案

tamoadmin 2024-05-25 人已围观

简介1.新高考2卷数学试题及答案2022年2.2022高考数学题及答案(2020高考数学题及答案解析)3.2023四川高考数学难度4.2018年四川高考数学试卷试题及答案解析(答案WORD版)5.2019年四川高考理科数学试卷答案解析及点评(WORD文字版)6.四川2023高考数学难度大吗 本期为大家整理全国甲卷数学文科试卷解析及参考答案相关内容,供大家估分对答案使用。甲卷省份有四川、云南、广西、贵州

1.新高考2卷数学试题及答案2022年

2.2022高考数学题及答案(2020高考数学题及答案解析)

3.2023四川高考数学难度

4.2018年四川高考数学试卷试题及答案解析(答案WORD版)

5.2019年四川高考理科数学试卷答案解析及点评(WORD文字版)

6.四川2023高考数学难度大吗

四川高考数学试卷2021答案,四川高考数学试卷答案

本期为大家整理全国甲卷数学文科试卷解析及参考答案相关内容,供大家估分对答案使用。甲卷省份有四川、云南、广西、贵州等地,一起来看看这些地区2022年高考数学甲卷答案文科是什么,以及全国甲卷数学文科试卷及答案2022年具体内容。

1. 2022年使用的地区

2022年使用全国甲卷数学文科试卷的省份地区有:四川省、广西、贵州省、云南省和西藏。

这五个地区的考生2022年高考采用传统高考模式,考生分为文科、理科两类,文科使用数学(文)试卷,理科使用数学(理)试卷。

2. 2022年甲卷数学考试时间

2022年6月7日15:00-17:00

3. 更多相关数据

我们可以从 本文下方“输入分数看能上的大学”一栏,输入自己的成绩、所在省份、选考科目,一键进入圆梦志愿 。

除了能看到 分数线、一分一段 表等更多高考数据, 还能查看其通过大数据分析及云计算处理后,为我们科学评估出的所有能上的大学 。

以下答案仅为参考答案,我们将在官方公布标准答案之后第一时间给大家整理汇总在此,请保持关注哦!

新高考2卷数学试题及答案2022年

2010年四川文科数学试题参考答案

来源:天利考试信息网 2010-6-8 字体:小 大

2010年四川文科数学试题参考答案

四川文数答案

1.D 2.C 3.C 4.D 5.A 6.C 7.C 8.D 9.D

2022高考数学题及答案(2020高考数学题及答案解析)

高考试卷往往都是在考生高度紧张的情况下完成的,想要记住全部答案基本上是不可能的,这就需要我们查找资料来确定高考是否犯错误。下面是我为大家收集的关于新高考2卷数学试题及答案2022年。希望可以帮助大家。

新高考二卷数学试卷

新高考二卷数学答案

如何填报好合适的高考志愿

每年高考填报志愿都让家长和学生头痛,因为要考虑的因素太多,总是左右为难,举棋不定。那么到底什么是自己的“最佳”专业?在确定“最佳”专业时,应该考虑哪些现实因素呢?

高考志愿是指高考考生在选择自己愿意就读的高校与专业时,按规定向招生部门和高校就自己的决定所表达的书面意见。通过填报高考志愿,一方面,考生表达了自己的要求,包括希望就读于哪种学校、哪所大学,喜欢什么专业等;另一方面,各高校又以学生填报的志愿为其录取的基本依据,从众多的报考者中择优选拔合格的新生。高校与学生之间的这种“双向选择”,正如人们求职、找工作实行的“双向选择”一样。

填报志愿是高校招生过程中的重要环节之一。无论对考生还是对学校和招生部门来说,都是不可忽视的。高校录取新生,既要以 文化 成绩为主全面考查学生的德智体条件,又要切实尊重考生志愿。对文化成绩上了线的考生,学校应严格按志愿录取。特别是实行学生缴费上学, 毕业 后自主择业的高教体制后,考生志愿将更加受重视、受尊重。因此,高考志愿不仅极大地关系到考生能否进入相应理想的院校、专业,关系到高校能否挑选到合格的学生,更关系到国家 教育 事业的健康发展。考生、家长、学校乃至社会都应重视填报志愿这一环节。

但是,在近几年招生中,却出现了有的学校(专业)报考人数过于集中,有的学校(专业)第一志愿在同批录取控制 分数线 以上的人数为计划招生人数的2倍、3倍乃至4倍、5倍之多,“撞车”现象严重;而有的学校某些专业却很少有人或无人填报。出现这种情况的原因很多,主要是一些考生和家长对高等学校的专业设置情况、毕业生的使用情况以及社会需求缺乏了解,同时更重要地是对自己的潜能和优势也缺乏清楚地了解。因此高考志愿出现了很多误区,如争挤热门倾向,“钱途”倾向,包办倾向,盲目攀比倾向,名校倾向,兴趣至上倾向等。陷入这些误区并最终使考生上演“悲剧”,无不和忽视个人潜能发展相关。

但由于选报志愿是个复杂问题,受“双向选择“的影响非常大,因此,在人生第一次重大决策时,在选择未来“最佳”专业时,要综合考虑和研究很多因素,但概括起来应是两大因素:一是外在的现实因素,也可以认为是短线因素,二是内在的个人潜能发展因素,也可以认为是长线因素。对不同的考生而言,这两大因素之间虽然有机地结合比较困难,但为了不至于“悲剧”重演,如何把握招生实际情况,又能立足长远发展,我们分别根据不同考虑因素提供相应建议,供参考。

(1)升学因素。重点考虑这一因素的考生或家长,一般是把保证被录取做为第一目标,把其他因素放在其次,这一般是高考成绩不大理想又希望尽快升学的考生。他们最大的担心就是能否升学,因此在大学的专业选择面上存在一些局限,甚至很多人宁可报考“冷门”,也不愿冒不必要的风险。这种考虑对于他们是最现实的,也是可以理解的。但在保证能够被录取的情况下,仍应该考虑一下自己的潜能和优势能否通过学这个专业得到更大发展,选择面虽然少,但仍有选择。一方面,在有限的选择中,去选择更适合潜能发展的专业,无疑为今后的发展奠定了良好的开端。另一方面,虽然不能进入符合自我潜能发展的“最佳”专业,但如果进入相近专业,同样为今后的“最佳”专业方向的发展打下基础,再通过进一步地 考研 、读博得到修正。例如如果计算机专业是自己的未来发展方向,但由于语文或化学成绩不太好,影响了你的高考总分,与其报考风险较大的计算机专业,不如报考较“冷门”的数学专业。有了数学基础,再主攻计算机专业便有了扎实基础。这类考生我们还有一个更重要的建议,要想在未来得到长足、持续的发展,选择更适合的专业比选择学校重要得多。因此,在有把握进入自己的“最佳”专业时,可以考虑“降格”选择院校,如大城市到中等城市,发达城市到发展中城市。在你追求人生目标当中,有句话相送:要立大志、立长志,相信自己的潜能会最大发挥出来。

(2)就业因素。把将来毕业后求职是否方便放在第一位, 其它 因素作次要考虑。这往往是一类很有把握上线被录取的考生。能否容易找到工作,这也是家长非常关心的因素。因为家长深有感触,这几年我国的职业需求情况变换很快,甚至很多大学生“毕业即失业”,孩子苦恼,家长痛心。基于这种考虑,本应无可厚非,但有些家长过于把这个因素放在首位,而忽略个人的潜能发展,将会得不偿失。原因有三:其一是职业“特点”变换很快,难以把握,当你认为很“热”的时候,可能快到“冷”的时候了,这和炒股一样,此一时,彼一时;其二即使找到了需求很大的专业,如果做得不开心或不够出色,或者说不适合这种职业,同样也容易淘汰。因此,家长和考生们切莫被眼前“火热”的就业形势所误导,在充分考虑就业前景时,同时别忘了自我潜能是否能在这个领域得到大的发展。

(3)成本因素。家庭经济困难的考生,一般要考虑选择收费标准相对较低或奖学金、助学条件较好的院校和专业,而把其他因素放在其次。有这种想法的家长和考生我们更能理解,如果自己的潜能发展的确可以在这样的院校找到相应的专业,那是最好不过了。但如果和自己的潜能发展太背离,也许需要慎重考虑。例如,自我潜能可能应该在美术方面得到最大发展,而由于经济问题,可能只好选择师范类的计算机专业。如果是这种情况,家长和考生必须要重新算一笔帐,也许进入了师范类的计算机专业暂时少花钱,最后可能也因此拿到了文凭,但工作的不顺心和压力,可能会导致他重新学习美术,到那时浪费的时间用金钱难以买到。当然不排除可以利用业余时间来学习美术,但无论如何一个业余的美术工作者很难与一个专业的美术工作者相匹敌。好在我国已经出台了“贷款助学”的政策,充分利用这个条件进入你的“最佳”专业,可以一边学习,一边参加 社会实践 。到那时你所享受的不光是学到了自己喜爱的“最佳”专业,同时也享受到了终于有能力偿还贷款的一种快乐。要记住:在这样的时代,时间比金钱更重要。

(4)名校因素。非名牌大学不去,这是一部分“尖子”学生的普遍想法。如果仅仅是为了炫耀和光彩,而和自我潜能发展的专业相去甚远,可能获得的是暂时的“面子”,同时也得到了终生的悔恨。据调查,在目前名牌大学校园中,相当一部分同学不适应本专业的学习,惜日的“天之骄子”突然变成今日的后进生,自然难以承受这种打击。轻微者,烦躁、失眠;严重者,精神崩溃、侵害他人或自杀。虽然这和没有正确的学习目的和人生发展目标有关,但相当一部分原因是专业的不适应。如果再缺乏相应的引导,自然产生压抑的心理。前一段时间,教科院潜能研究中心接待了一个清华大学的高才生,已上大三的他,眼看再过一年就毕业了,却落入到了要退学的境地。经过潜能测试,发现孩子明显在文学、历史、建筑艺术方面有很大的潜能,而学的却是无线电专业。母亲流着泪向我们讲述了孩子的成长经历,与我们的测试大致相符,如小时候,喜欢看文学名著和古迹碑文,小学没毕业就已经把初中的英语学完了。孩子是以理科全优成绩进入了清华大学,但却没想到孩子在大二已明显地对所学习的课程厌烦,专业课再二三地不及格,已到了劝退学的地步。但孩子似乎不象高中时大家所认为的属于“指哪打哪”的人了,开始不听母亲和老师的话,一心想学建筑,但却到了今天这个地步。作为母亲,怎么能忍受孩子失去清华大学的毕业证书呢!现在所痛悔的是,当初为了上清华,忽略了选择适合自我潜能发展的专业问题。其实退一步,海阔天空。如果选择更符合自我潜能发展的专业,即使院校稍微逊色一点,但对自己的成才大有好处。我们奉劝那些“尖子”学生,在考虑名牌大学的同时,不要忽视专业。因为专业将可能终生与你为伴,而学校只与你相处短暂的时光。未来社会虽然需要通才,或复合型人才,但专业更是立足之本。选择了更能充分发挥潜能的专业或职业,你的人生目标就会更远大,就不会为眼前的考试、暂时的排位斤斤计较,因为你更醉心于创造社会价值,更醉心于迈向自我实现的境界中。

对于大部分考生来说,需要把升学、就业、成本和潜能发展等几个因素综合兼顾,统筹考虑。事实上,许多家长,还有更多的因素要考虑,如考生身体状况、院校或专业竞争状况、地理方位、院校条件等,但无论如何你必须了解自己的潜能和优势,因为命运永远掌握在自己手中,未来最大的赢家是善于控制自我的人。

鉴于上述情况,我们认为考生在报考专业时,除了考虑到报考学校、经济条件、就业情况和专业发展前景等因素外,更重要的是要考虑自我潜能发展的因素。经过我们这几年对高考生心理特点研究和实际测试的应用情况,我们认为影响一个人潜能发展的四个重要因素是:学科兴趣、生涯动机倾向、能力发展的优势所在、以及自己的个性禀赋特点,并对这些方面予以全面、综合地考虑和分析。

新高考2卷数学试题及答案2022年相关 文章 :

★ 2022年新高考全国二卷物理试卷及答案解析

★ 2022年全国乙卷理科数学试卷及答案

★ 2022北京高考数学(文科)试题及答案

★ 2022新高考数学Ⅰ卷试卷及参考答案

★ 2022北京高考数学(理科)试题及答案

★ 2022年高考全国乙卷(理科)数学科目题目与答案解析

★ 2022全国乙卷理科数学真题及答案解析

★ 2022年全国高考北京卷数学科目考试真题

★ 2022高考全国乙卷试题及答案(理科)

★ 2022年高考数学卷真题及答案解析(全国新高考1卷)

2023四川高考数学难度

2022年全国乙卷高考数学试题答案

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题答案

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题答案相关文章:

★2022高考全国乙卷试题及答案

★2022高考理科数学乙卷试题解析

★2022年全国乙卷高考理科数学

★2022年全国乙卷文科数学卷真题公布

★2022年高考数学试题及答案

★2022年全国乙卷高考数学真题及答案

★2022年全国理科数学卷试题答案及解析

★2022全国Ⅰ卷高考数学试题及参考答案一览

★2022年英语全国乙卷试题及答案

★2022年高考乙卷数学真题试卷

2022年全国新高考1卷数学试题及答案解析

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案解析。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学试题答案解析

高考数学复习主干知识点汇总:

因为基础知识融汇于主干内容之中,主干内容又是整个学科知识体系的重要支撑,理所当然是高考的重之中重。主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:

1.函数

函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。

2.三角函数

三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。

3.立体几何

承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。

4.数列与极限

数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。

5.解析几何

直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。

2022年全国新高考1卷数学试题及答案解析相关文章:

★2022高考甲卷数学真题试卷及答案

★2022年新高考Ⅱ卷数学真题试卷及答案

★2022高考全国甲卷数学试题及答案

★2022高考数学大题题型总结

★2022全国乙卷理科数学真题及答案解析

★2022年全国乙卷高考数学试卷

★2022年新高考1卷语文真题及答案解析

★全国新高考一卷2022语文试题及答案一览

★2022江西高考文科数学试题及答案

★2022全国新高考II卷语文试题及答案解析

2022年全国新高考1卷数学试题及答案详解

高考数学命题贯彻高考内容改革的要求,依据高中课程标准命题,进一步增强考试与教学的衔接。下面是我为大家收集的关于2022年全国新高考1卷数学试题及答案详解。希望可以帮助大家。

全国新高考1卷数学试题

全国新高考1卷数学答案详解

2022高考数学知识点总结

1.定义:

用符号〉,=,〈号连接的式子叫不等式。

2.性质:

①不等式的两边都加上或减去同一个整式,不等号方向不变。

②不等式的两边都乘以或者除以一个正数,不等号方向不变。

③不等式的两边都乘以或除以同一个负数,不等号方向相反。

3.分类:

①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

②一元一次不等式组:

a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

4.考点:

①解一元一次不等式

②根据具体问题中的数量关系列不等式并解决简单实际问题

③用数轴表示一元一次不等式的解集

考点一:集合与简易逻辑

集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数

函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量

一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.

考点四:数列与不等式

不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查.在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目.

一、排列

1定义

从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn.

2排列数的公式与性质

排列数的公式:Amn=n

特例:当m=n时,Amn=n!=n×3×2×1

规定:0!=1

二、组合

1定义

从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合

从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2比较与鉴别

由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·nM②加法原理:N=n1+n2+n3++nM

2.排列与组合

Anm=n-=n!/!Ann=n!

Cnm=n!/!m!

Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?6?1k!=!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法

插空法间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

把具体问题转化或归结为排列或组合问题;

通过分析确定运用分类计数原理还是分步计数原理;

分析题目条件,避免“选取”时重复和遗漏;

列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3++Cnran-rbr+-+Cnn-1abn-1+Cnnbn

特别地:n=1+Cn1x+Cn2x2++Cnrxr++Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4++Cnr++Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数的区别,在求某几项的系数的和时注意赋值法的应用。

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2。整式不等式的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4。证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差→变形→判断符号。

数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

近几年来,高考关于数列方面的命题主要有以下三个方面;

数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;

2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,

进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力

2022年全国新高考1卷数学试题及答案详解相关文章:

★2022高考北京卷数学真题及答案解析

★2022高考甲卷数学真题试卷及答案

★2022北京卷高考文科数学试题及答案解析

★2022高考全国甲卷数学试题及答案

★2022年新高考Ⅱ卷数学真题试卷及答案

★2022全国乙卷理科数学真题及答案解析

★2022高考数学大题题型总结

★2022年高考全国一卷作文预测及范文

★2022年高考数学必考知识点总结最新

★2022年全国乙卷高考数学试卷

2022年北京高考数学试题及参考答案

相比很多同学在高考过后的第一时间就是找答案核对,虽然知道这样可能会影响心情,但还是忍不住想要对照答案。下面是我为大家整理的关于2022年北京高考数学试题及参考答案,如果喜欢可以分享给身边的朋友喔!

2022年北京高考数学试题

2022年北京高考数学试题参考答案

高考数学答题策略

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

一、会做与得分的关系

要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。

二、审题与解题的关系

有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。

三、难题与容易题的关系

拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的'顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。

四、快与准的关系

在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

2022年北京高考数学试题及参考答案相关文章:

★2022数学高考题及答案

★2022新高考数学Ⅰ卷试卷及参考答案

★2022年全国Ⅰ卷高考数学试题及参考答案公布

★2022全国一卷高考数学试题及答案

★2022新高考全国一卷数学试卷及答案解析

★2022年高考数学试题及答案

★2022全国新高考Ⅰ卷数学卷完整试题及答案一览

★2022新高考全国一卷数学试卷答案解析

★2022年高考数学全国乙卷试题答案

★2022新高考数学试题及答案详解

2018年四川高考数学试卷试题及答案解析(答案WORD版)

2023四川高考数学难度与历年持平,详细介绍如下:

1、历年四川高考数学难度分析:从历年来看,四川高考数学试卷的难度可以说是相对稳定的,以2019年高考为例,整张试卷难度适中,部分题目难度较大,但整体来说并不算特别难。而在2020年高考中,数学试卷整体难度有所下降,考生普遍反映试题难度适中,与2022年相比略有降低。

2、高考改革的影响:从2021年开始,全国高考进行了一系列改革,包括考试科目、考试内容等。这些改革也会对2023年四川高考数学试卷的难度产生影响。例如在新的高考模式下,数学考试可能会更加注重实用性和应用性,而不是纯粹的理论计算。

3、数学考试中常见的题型:无论是传统高考还是新的高考模式,数学考试中的题型都有一定的规律。一些经典的数学题型,如函数、三角函数、平面几何、立体几何、概率论等,几乎每年都会出现在试卷中,并且难度适中。所以学生在备考时,需要重点掌握这些常见题型,了解它们的特点和解题方法。

4、题目难度与学生素质:最终2023年四川高考数学试卷的难度还与学生的整体素质有关,如果考生整体水平高,那么试卷难度自然也会相应提高,如果考生整体水平处于较低水平,那么试卷难度会偏向于较为简单。

5、总结:我们可以从历年试卷和高考改革的影响入手,对试卷难度进行一些初步的推测。但是需要注意的是,这只是一种猜测,并不具有确定性,因此考生们需要把握自己的复习进程,尽可能全面深入地备考,以应对可能出现的任何挑战。

2019年四川高考理科数学试卷答案解析及点评(WORD文字版)

2018年四川高考数学试卷试题及答案解析(答案WORD版)

2015四川高考数学试卷点评

2015年高考数学试卷,遵循《考试大纲》及《考试说明(四川版)》要求,与近年来试题风格一致,切合当前数学教学实际,体现课程改革理念,符合高考考试性质,在平稳推进的基础上有所创新。试题设计立足于学科核心和主干,充分体现数学的科学价值和人文价值,将知识、能力和素质融为一体,深化能力立意,强化知识交汇,重点考查支撑数学学科体系的内容,充分考查基础知识、基本方法、基本思想,深入考查考生的运算求解能力、推理论证能力、抽象概括能力、空间想象能力、应用意识和创新意识,突出考查数学思维、数学思想方法,合理考查学生的探究意识和学习潜能。

全卷难度设置符合高中学生数学学习现状,重视教材考基础,突出思维考能力,体现课改考探究,展现了数学的抽象性、逻辑性、应用性和创造性,突出试题的基础性、综合性、原创性和选拔性,试卷布局合理、层次分明,问题设计科学、表述规范,有利于准确测试不同层次考生的学习水平。

一、重视教材与基础,突出核心内容

试题高度重视教材价值的挖掘与联系,有的题目直接由教材的例题或习题改编,有的问题产生于教材背景。文理科1-8、11-13、6-19等题源于教材,又高于教材,充分发挥了教材在理解数学、理解教学等方面的价值。这种立足于教材编拟高考试题的理念和方法,充分保障了试题背景的公平性,能够有效引导中学数学教学重视教材、深刻理解教材,对进一步推进课程改革、减轻学生过重的学业负担具有良好的导向作用。

全卷重视基础知识的全面考查,覆盖了整个高中数学的所有知识板块;试题设计立足于高中数学的核心和主干,对高中数学中的函数与导数、三角函数、概率统计、解析几何、立体几何、数列、向量、不等式等进行了重点考查。理科4、8、9、13、15、21,文科4、5、8、15、21等题,全面考查函数概念、性质等基础知识;理科5、10、20,文科7、10、20等题,考查直线、圆、圆锥曲线的方程及其简单应用,是解析几何的基础和主体内容;理科14、18题考查空间线面关系和面面夹角的计算,文科14、18题考查空间线面关系、三视图和体积的计算;理科17题,文科3、17题,考查概率统计相关知识;文理科16题,考查数列相关知识;文科3题考查分层抽样的概念,需要考生认识其本质属性;理科14题考查空间线线角的计算,如果概念不清,即使运算无误也不能获得正确结果。这样的内容设计,在全面考查基础的同时,突出考查支撑学科体系的的内容,重视对基础知识和通性通法的考查,对高中毕业生的数学基础和素养进行重点测试,保证了试卷的内容效度,有利于中学数学教学重视基础、强化核心内容和主干知识、回归数学本质。

二、注重能力与方法,强化数学思维

试卷以能力立意设计试题,多角度、多层次地考查了运算求解能力、推理论证能力、空间想象能力、抽象概括能力、数据处理能力、应用意识和创新意识。在此基础上,特别突出了对数学思维的全面、深刻考查,大量题目充分考查了观察、联想、类比、猜想、估算等数学思维方法与能力,对函数与方程、数形结合、分类与整合、化归与转化、特殊与一般等数学思想进行了全面考查。理科15、16、21题,文科15、21题,既考查了几何直观、联想、猜想、估算等直觉思维,又要求考生进行精确计算、严密推理;理科13、17题,文科8、17题,考查了运算求解能力、应用意识;文理科15题,考查了直觉猜想、抽象概括、推理论证和创新意识,对数学思维进行了全面考查,其特点是运算量小、思维量大;文理科16-21等题重点考查运算求解能力和推理论证能力;文理科20、21题,要求考生具备高水平的抽象概括能力、推理论证能力、运算求解能力、数学探究意识和创新意识,考查了多种数学思想与方法。

全卷注重考查学生对数学基本概念、重要定理等的理解与应用,注意控制和减少繁琐的运算。理科7、9、10、14、15、20、21题,文科7、9、10、14、15、21等题,如果灵活运用数形结合、化归与转化、特殊与一般等数学思想,就可简化解题过程、避免繁琐运算;文理科15题,虽然思维要求高,但在深刻理解问题本质的基础上,运用函数与方程、数形结合思想解答,并不需要特殊技巧与复杂运算。这类问题背景深刻、构思巧妙、取材适当、设问合理、切合实际,侧重考查考生对知识的理解和应用,强调科学性、严谨性、抽象性、探究性、综合性和应用性的考查,能够有效检测考生将知识、方法迁移到不同情境的能力,从而检测考生的思维广度、深度以及进一步学习的潜能。

三、关注探究与创新,体现课改理念

试卷从学科整体和思维价值的高度设置问题情境,注重知识间的内在联系与交汇;通过适当增强试题的`综合性,分层次设置试题难度,能更好地体现考试的选拔功能。理科9题涉及函数单调性、线性规划与基本不等式,文理科10题联系抛物线、圆、圆的切线和数形结合思想,具有较强的综合性和一定的难度;理科19题综合三角恒等变换与解三角形,立意鲜明、情境新颖、形式优美,考查考生思维的灵活性;文理科21题,以对数函数、二次函数、导数、函数零点、不等式等知识为载体,考查考生综合运用数学知识、数学方法、数学思想的能力。这样的试题对数学思维的灵活性、深刻性、创造性都有较高要求,具有一定的难度,解答这些问题,需要具有较强的分析问题、探究问题和解决问题的能力。

试题设计紧密结合数学学科特点,通过对探究意识、应用意识和创新意识的考查,充分体现了课程改革理念。文理科10、15、20、21等题考查了探究意识,考生需要深入分析问题情境,从特殊到一般、从直观到抽象进行不同侧面的探究,并合理运用相应的数学方法和思想才能准确、迅速解答。理科20题要求考生探究定点是否存在,若假设定点坐标直接求解则有不少运算障碍;若通过特殊情形的解决,寻求一般的、运动变化的问题的解决思路和方法,对具体的对象进行抽象概括,完成解答则相对简单。这样的问题设计,针对考生的探究意识和创新意识进行考查,保障了试题对较高学习水平层次考生的良好区分。理科13、17,文科8、17等题以考生熟悉的现实生活背景考查考生提炼数量关系、将现实问题转化为数学问题并构造数学模型加以解决的能力,体现了应用意识和实践能力的考查特点。文理21题展示了数学学科的抽象性和严谨性,要求考生具有高层次的理性思维,考生解答时可以采用“联系几何直观—探索解题思路—提出合情猜想—构造辅助函数—结合估算精算—进行推理证明”的思路,整个解答过程与数学研究的过程基本一致,能较好地促进考生在数学学习的过程中掌握数学知识、探究数学问题和发现数学规律。这些试题具有立意深远、背景深刻、设问巧妙等特点,富含思维价值,体现了课程改革理念,是检测考生理性思维广度、深度和学习潜能的良好素材。这样的设计,对考生评价合理、科学,鼓励积极、主动、探究式的学习,有利于引导中学数学教学注重提高学生的思维能力、发展应用意识和创新意识,对全面深化课程改革、提高中学数学教学质量有十分积极的作用。

四川2023高考数学难度大吗

一.注重基础,加强创新、突出重难点思维方法

 纵观高考试题,突出体现在基础与创新:四川高考试题在延续过去几年命题特点的基础上,加大了创新能力、数学思想方法的考查。在题型、题量和难度上保持了相对稳定,避免大起大落。选择填空试题叙述简练,侧重考查基础,如理科第1,2,3,4,5,7,8题,直接来自教材习题或改编,中等程度学生能快速解答;试题命制贴近生活,如第12题,以生活中的食品问题为背景考查对数,第17题以辩论赛为背景,考查概率统计的应用;解答题较往年更改了题目顺序,依次是数列、概率统计、立体几何、三角、解析几何与函数导数,这个变化可能让大多数同学措手不及。同时适度强化了不同模块之间的联系与综合,如数列大题将数列与不等式的应用结合在一起,加强了综合能力的考查。

知识模块 函数与导数 平面向量与三角函数 数列与不等式 立体几何 解析几何 计数原理与概率统计 总计 2013 24 27 17 17 18 17 120 2014 29 27 17 17 23 12 125 2015 29 27 12 17 23 17 125

 通过上表可以看出,四川高考数学试题非常注重对学科主干知识的重点考查。

 二.知识素材、情境都有创新,注重探究

 同时部分试题在素材选择、情景设置和设问方式上相比往年有所创新,考查学生的探究意识,应用意识和创新意识,如第10、20等题需要考生根据问题设计的情景,从特殊到一般,从形象到抽象进行不同侧面的探究,第21题也考查学生的应用意识和创新意识,对考生综合与灵活运用所学数学知识、思想方法,进行独立思考分析,创造性的解决问题有较高且合理的要求。

 第20题解析几何大题总体来说命题风格与往年差距较大,此题需要学生有探究猜想的能力,先通过特殊直线将点找出来,再去证明。并且更注重了代数与几何综合的考查,如果能发现此比例关系是角平分线定理,那么求解起来会相当轻松。这种解题思路的变化可能对很多考生来说难以适应。

 第21题展现了数学学科的抽象性和科学性,和最后一题类似,考查2阶导数和分类讨论,解答时需要考生借助图象直观发现解题思路和结论,用严谨的逻辑推理进行证明,整个解答过程经历“画图——观察——探究——发现——证明”的过程,这些试题立意新颖,背景深刻,情境生动,设问巧妙,能很好的考查学生理性思维的广度与深度,考查学生的数学学习潜能。

 总之,四川省高考数学试题充分考虑四川考生特点,紧扣考试大纲,立足教材,在考查基础知识的同时,重视考查能力,追求创新意识,从来看,尤其是注重学习数学过程中的探究。试卷布局合理,难度较更难,有一定区分度,称得上是一份质量上乘的试卷,对促进课程改革也有良好的导向作用。

 最后,学而思高考研究中心祝愿高考学子能够取得优异的成绩,走进理想的大学。同时,对于决战高考学子来说,暑假开始准备一轮复习,祝愿新高三学子能够经历高三一年风雨,在这个暑假开始为高考打下坚实的基础,在高考中取得理想的成绩。

 赵武俊:学而思高考研究中心数学研究员。高考数学143分,以665分考入 北京大学 ,学而思自主招生班主带老师。上课激情风趣、条理清晰,擅长用朴素的语言阐释高中数学。

 陈渝:学而思高考研究中心数学研究员,高中数学联赛一等奖,考入 北京大学 数学系。

2023四川高考理科数学试题难度适中。

从这两年的情况看,实行新高考改革后,各科考试的难度都在急剧上升,高考的分数明显下降。教育部专门发文要通过命题引导中学教学中减少死记硬背和“机械刷题”耐亮耐,因此,在准备2023高考的同学们要多进行反思和总结,同时注意联系实际,提高自己分析问题和解决问题的能力。

2023高考的难度体现在哪些方面:

1、试题灵活多变,低效率刷题没效果。虽然高考试题命题始终坚持稳中有变的原则,其实变化无处不在。高考命题坚持能力立意的原则,也就是题目必须要考查学生真正的学科能力,考查学生能否把基础知识灵活运用。

而这里所说的能力,指的是学生对基础知识的深入理解,吃透本质,懂得规律,这自然是个很高的要求。未来通过刷题来取得高分的途径只会越来越难。

2、试题源于课本,但却远远高于课本。源于课本而高于课本,这是高考题的命题原则。遗憾的是学生普遍没有重视,认为课本实在太简单,和高考真题完全没法比。如果研究历年高考真题,会发现有一些题目直接源自对课本题目的“改造”,这个改造的过程,体现的是提高综合性,设问方式更加灵活。

3、高考题不仅“难”,而且还“麻烦”。这里所说的难,指的是难度很大,主要是压轴题的难度,那些题目中等水平学生建议放弃;另一种难度,就是新颖,一时难以键搜应对。

所谓的麻烦,指的是那些考生觉得不难,审题容易,可是要真正解答起来才发现,计算量非常大,步骤非常繁琐,几乎很难最终算出来;类似的情况在物理、化学上也会有。

文章标签: # 高考 # 数学 # 2022