您现在的位置是: 首页 > 教育新闻 教育新闻
高考数学答案17_高考数学答案2022新高考一卷
tamoadmin 2024-05-25 人已围观
简介1.2011江西高考数学文科答案2.高三数学寒假作业答案|高三数学题及答案3.2006上海高考数学试题答案理科试题与答案数学试题(文科)第Ⅰ卷 选择题(共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)1.已知集合 , ,则 =( A )A. B. C. D. 2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值
1.2011江西高考数学文科答案
2.高三数学寒假作业答案|高三数学题及答案
3.2006上海高考数学试题答案理科
试题与答案
数学试题(文科)
第Ⅰ卷 选择题(共50分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1.已知集合 , ,则 =( A )
A. B.
C. D.
2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )
A.6 B.-2 C.4 D.-6
3.已知 ,则“ ”是“ ”的 ( B )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知点P(x,y)在不等式组 表示的平面区域上运动,
则z=x-y的取值范围是( )
A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]
5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )
A. B. C. D.
一年级 二年级 三年级
女生 373
男生 377 370
6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的
学生人数为( )
A.24 B.18 C.16 D.12
7.平面向量 =( )
A.1 B.2 C.3 D.
8.在等差数列 中,已知 ,那么 的值为( )
A.-30 B.15 C.-60 D.-15
9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )
A.①是真命题,②是假命题 B.①是假命题,②是真命题
C.①②都是真命题 D.①②都是假命题
10.已知一个几何体的三视图如所示,则该几何体的体积为( )
A.6 B.5.5
C.5 D.4.5
第Ⅱ卷 非选择题(共100分)
二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.
(一)必做题(11~14题)
11.已知 ,且 是第二象限的角,
则 ___________.
12.执行右边的程序框图,若 =12, 则输
出的 = ;
13.函数 若
则 的值为: ;
14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.
(二)选做题(15~17题,考生只能从中选做一题)
15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;
16.(选修4—5 不等式选讲)不等式 的解集是: ;
17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .
三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)
18.(本小题12分)
已知向量 , ,设 .
(1).求 的值;
(2).当 时,求函数 的值域。
19.(本小题12分)
已知函数 .
(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,
求方程 有两个不相等实根的概率;
(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.
20.(本小题12分)
在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.
(1)求证:BC⊥AD;
(2)求三棱锥C—AOD的体积.
21.(本小题12分)
已知数列 的前n项和为 , 且满足 ,
(1) 求 的值;
(2) 求证:数列 是等比数列;
(3) 若 , 求数列 的前n项和 .
22、(本小题13分)
已知函数 在点 处的切线方程为 .
(1)求 的值;
(2)求函数 的单调区间;
(3)求函数 的值域.
23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.
文科数学参考答案与评分标准
一、选择题:
A卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案 A D A B D C B A D C
B卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题:
(一)必做题
11. ; 12.4.; 13.1或 ; 14. .
(二)选做题
15.相交;16. ;17. .
三、解答题:
18.解: =
=
= ……………………………………(4分)
(1)
= …………………………(8分)
(2)当 时, ,
∴ ………………………(12分)
19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素
∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),
(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本事件总数为12.
设“方程 有两个不相等的实根”为事件A,
当 时方程 有两个不相等实根的充要条件为
当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)
即A包含的基本事件数为6.
∴方程 有两个不相等的实根的概率
……………………………………………………(6分)
(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数
则试验的全部结果构成区域
这是一个矩形区域,其面积
设“方程 没有实根”为事件B
则事件B构成的区域为
即图中阴影部分的梯形,其面积
由几何概型的概率计算公式可得方程 没有实根的概率
………………………………………………(12分)
20.解法一:(1)∵BOCD为正方形,
∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角
∴AO⊥BO ∵AO⊥CO 且BO∩CO=O
∴AO⊥平面BCO 又∵
∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO
∴BC⊥AD …………(6分)
(2) …………………………(12分)
21.解:(1)因为 ,令 , 解得 ……1分
再分别令 ,解得 ……………………………3分
(2)因为 ,
所以 ,
两个代数式相减得到 ……………………………5分
所以 ,
又因为 ,所以 构成首项为2, 公比为2的等比数列…7分
(3)因为 构成首项为2, 公比为2的等比数列
所以 ,所以 ……………………………8分
因为 ,所以
所以
令
因此 ……………………………11分
所以 ………………………12分
22.解:(1)
∵ 在点 处的切线方程为 .
∴ …………………………(5)
(2)由(1)知: ,
x
2
+ 0 — 0 +
极大
极小
∴ 的单调递增区间是: 和
的单调递减区间是: ………………………………(9)
(3)由(2)知:当x= -1时, 取最小值
当x= 2时, 取最大值
且当 时, ;又当x<0时, ,
所以 的值域为 ………………………………………(13)
23.解:(1) , ,设
则 ,
又 , ,∴ ,即所求 ……(5分)
(2)设 : 联立
得:
∵ ,∴ ,
则
同理 , ∴ ……(10分)
(3)设 : ,联立
,得: ,∴
∴|AB|=
而
∴S=
当且仅当m=±2时等号成立。…………………………………(14分)
2011江西高考数学文科答案
多年来北京卷会在最后一题做大胆的创新。具体来说,北京卷的最后一题并不执着于具体的知识或 方法 ,而是通过全新的背景,考查一般意义下的数学素养。下面是我为大家收集的关于北京卷高考数学试卷及答案解析2022年。希望可以帮助大家。
北京卷高考数学试卷
北京卷高考数学答案解析
高中数学知识汇总
必修一:1、集合与函数的概念 (这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用 (比较抽象,较难理解)
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题
3、圆方程:
必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2
选修1--1:重点:高考占30分
1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)
理科:选修2—1、2—2、2—3
选修2--1:1、逻辑用语 2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)
选修2--2:1、导数与微积分2、推理证明:一般不考3、复数
选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分2、随机变量及其分布:不单独命题3、统计:
高考的知识板块
集合与简单逻辑:5分或不考
函数:高考60分:①、指数函数 ②对数函数 ③二次函数 ④三次函数 ⑤三角函数 ⑥抽象函数(无函数表达式,不易理解,难点)
平面向量与解三角形
立体几何:22分左右
不等式:(线性规则)5分必考
数列:17分 (一道大题+一道选择或填空)易和函数结合命题
平面解析几何:(30分左右)
计算原理:10分左右
概率统计:12分----17分
复数:5分
推理证明
一般高考大题分布
1、17题:三角函数
2、18、19、20 三题:立体几何 、概率 、数列
3、21、22 题:函数、圆锥曲线
成绩不理想一般是以下几种情况:
做题不细心,(会做,做不对)
基础知识没有掌握
解决问题不全面,知识的运用没有系统化(如:一道题综合了多个知识点)
心理素质不好
总之学__数学一定要掌握科学的学__方法:1、笔记:记老师讲的课本上没有的知识点,尤其是数列性质,课本上没有,但做题经常用到 2、错题收集、归纳 总结
北京卷高考数学试卷及答案解析2022年相关 文章 :
★ 2022全国甲卷高考数学文科试卷及答案解析
★ 2022年全国新高考II卷数学真题及答案
★ 2022高考全国乙卷试题及答案(理科)
★ 2022年新高考Ⅱ卷数学真题试卷及答案
★ 2022年新高考Ⅱ卷数学试题及答案解析
★ 2022年新高考Ⅰ卷数学真题试卷及答案
★ 2022高考甲卷数学真题试卷及答案
★ 2022高考全国甲卷文综试题及答案一览
★ 2022高考全国甲卷数学试题及答案
★ 全国新高考II卷2022英语试题及答案解析
高三数学寒假作业答案|高三数学题及答案
1--5 : B D C A B
6-10: B DC DA
11、-6
12、 18
13、 27
14、—8
15、 x>=0
详细答案和解析
注明:部分字符和没有显示
1.若,则复数=( )
A. B. C. D.
答案:B
解析:
2.若全集,则集合等于( )
A. B. C. D.
答案:D
解析:
,,,
若,则的定义域为( )
A. B. C. D.
答案:C
解析:
4.曲线在点A(0,1)处的切线斜率为( )
A.1 B.2 C. D.
答案:A
解析:
5.设{}为等差数列,公差d = -2,为其前n项和.若,则=( )
A.18 B.20 C.22 D.24
答案:B
解析:
6.观察下列各式:则,…,则的末两位数字为( )
A.01 B.43 C.07 D.49
答案:B
解析:
7.为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )
A. B.
C. D.
答案:D
解析:计算可以得知,中位数为5.5,众数为5所以选D
8.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
父亲身高x(cm) 174 176 176 176 178
儿子身高y(cm) 175 175 176 177 177
则y对x的线性回归方程为
A.y = x-1 B.y = x+1 C.y = 88+ D.y = 176
答案:C
解析:线性回归方程,,
9.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为( )
答案:D
解析:左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案。
10.如图,一个“凸轮”放置于直角坐标系X轴上方,其“底端”落在原点O处,一顶点及
中心M在Y轴正半轴上,它的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.
今使“凸轮”沿X轴正向滚动前进,在滚动过程中“凸轮”每时每刻都有一个“最高点”,其中心也在不断移动位置,则在“凸轮”滚动一周的过程中,将其“最高点”和“中心点”所形成的图形按上、下放置,应大致为( )
答案:A
解析:根据中心M的位置,可以知道中心并非是出于最低与最高中间的位置,而是稍微偏上,随着转动,M的位置会先变高,当C到底时,M最高,排除CD选项,而对于最高点,当M最高时,最高点的高度应该与旋转开始前相同,因此排除B ,选A。
二.填空题:本大题共5小题,每小题5分,共25分.
11.已知两个单位向量,的夹角为,若向量,,则=___.
答案:-6.
解析:要求*,只需将题目已知条件带入,得:
*=(-2)*(3+4)=
其中=1,==1*1*=,,
带入,原式=3*1—2*—8*1=—6
(PS: 这道题是道基础题,在我们做过的高考题中2007年广东文科的第四题,以及寒假题海班文科讲义73页的第十题,几乎是原题。考查的就是向量的基本运算。送分题(*^__^*) )
若双曲线的离心率e=2,则m=____.
答案:48.
解析:根据双曲线方程:知,
,并在双曲线中有:,
离心率e==2=,
m=48
(PS: 这道题虽然考的是解析几何,大家印象中的解几题感觉都很难,但此题是个非常轻松的得分题。你只需知道解几的一些基本定义,并且计算也不复杂。在2008年安徽文科的第14题以及2009福建文科的第4题都见过。所谓认真听课,勤做笔记,有的就是这个效果!)
13.下图是某算法的程序框图,则程序运行后输出的结果是____.
答案:27.
解析:由框图的顺序,s=0,n=1,s=(s+n)n=(0+1)*1=1,n=n+1=2,依次循环
S=(1+2)*2=6,n=3,注意此刻3>3仍然是否,所以还要循环一次
s=(6+3)*3=27,n=4,此刻输出,s=27.
(PS: 程序框图的题一直是大家的青睐,就是一个循环计算的过程。2010天津文科卷的第3题,考题与此类似)
已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_______.
答案:—8.
解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角。=
(PS:大家可以看到,步骤越来越少,不就意味着题也越来越简单吗?并且此题在我们春季班教材3第10页的第5题,出现了一模一样。怎么能说高考题是难题偏题。)
15.对于,不等式的解集为_______
答案: . x>=0
解析:两种方法,
方法一:分三段,
当x<-10时, -x-10+x-2,
当 时, x+10-x+2,
当x>2时, x+10-x+2, x>2
x>=0
方法二:用绝对值的几何意义,可以看成到两点-10和2的距离差大于等于8的所有点的集合,画出数轴线,找到0到-10的距离为10,到2的距离为2,,并当x往右移动,距离差会大于8,所以满足条件的x的范围是. x>=0
(PS: 此题竟出现在填空的最后一道压轴题,不知道神马情况。。。。。更加肯定考试考的都是基础,并且!!在我们除夕班的时候讲过一道一摸一样,只是换了数字而已的题型,在除夕教材第10页的15题。。太强悍啦!!几乎每道都是咱上课讲过的题目~~所以,亲爱的童鞋们,现在的你上课还在聊Q, 睡觉流口水吗)
2006上海高考数学试题答案理科
高三网权威发布高三数学寒假作业答案,更多高三数学寒假作业答案相关信息请访问高三网。 导语以下是大范文网为大家整理的关于高三数学寒假作业答案,欢迎大家阅读,希望能够帮助到大家!
高一数学寒假作业1参考答案:
一、1~5CABCB6~10CBBCC11~12BB
二、13,
14(1);(2){1,2,3}N;(3){1};(4)0;15-116或;;
或.
三、17.{0.-1,1};18.;19.(1)a2-4b=0(2)a=-4,b=320..
高一数学寒假作业2参考答案:
一.1~5CDBBD6~10CCCCA11~12BB
二.13.(1,+∞)14.131516,
三.17.略18、用定义证明即可。f(x)的最大值为:,最小值为:
19.解:⑴设任取且
即在上为增函数.
⑵
20.解:在上为偶函数,在上单调递减
在上为增函数又
,
由得
解集为.
高一数学寒假作业3参考答案
一、选择题:
1.B2.C3.C4.A5.C6.A7.A8.D9.A10.B11.B12.C
二、填空题:
13.14.1215.;16.4-a,
三、解答题:
17.略
18.略
19.解:(1)开口向下;对称轴为;顶点坐标为;
(2)函数的最大值为1;无最小值;
(3)函数在上是增加的,在上是减少的。
20.Ⅰ、Ⅱ、
高一数学寒假作业4参考答案
一、1~8CBCDAACC9-12BBCD
二、13、[—,1]14、15、16、x>2或0
三、17、(1)如图所示:
(2)单调区间为,.
(3)由图象可知:当时,函数取到最小值
18.(1)函数的定义域为(—1,1)
(2)当a>1时,x(0,1)当0
19.解:若a>1,则在区间[1,7]上的最大值为,
最小值为,依题意,有,解得a=16;
若0
,最大值为,依题意,有,解得a=。
综上,得a=16或a=。
20、解:(1)在是单调增函数
,
(2)令,,原式变为:,
,,当时,此时,,
当时,此时,。
高一数学寒假作业5参考答案
一、1~8CDBDADBB9~12BBCD
13.19/614.15.16.
17.解:要使原函数有意义,须使:解:要使原函数有意义,须使:
即得
所以,原函数的定义域是:所以,原函数的定义域是:
(-1,7)(7,).(,1)(1,).
18.(1)(-1,1)(2)(0,1)19.略
20.解:
令,因为0≤x≤2,所以,则y==()
因为二次函数的对称轴为t=3,所以函数y=在区间[1,3]上是减函数,在区间[3,4]上是增函数.∴当,即x=log3时
当,即x=0时
高一数学寒假作业6答案:
一、选择题:
1.D2.C3.D4.C5.A6.C7.D8.A9.C10.A11.D1.B
二、填空题
13.(-2,8),(4,1)14.[-1,1]15.(0,2/3)∪(1,+∞)16.[0.5,1)
17.略18.略
19.解:在上为偶函数,在上单调递减在上为增函数
又
,
由得
解集为.
20.(1)或(2)当时,,从而可能是:.分别求解,得;
高一数学寒假作业7参考答案
一、选择题:
1.B2.B3.D4.D5.B6.A7.B8.A9.D10.B11.D12.D
二、填空题
13.14
15.16
三、解答题:17.略
18解:(1)
(2)
19.–2tanα
20T=2×8=16=,=,A=
设曲线与x轴交点中离原点较近的一个点的横坐标是,则2-=6-2即=-2
∴=–=,y=sin()
当=2kл+,即x=16k+2时,y最大=
当=2kл+,即x=16k+10时,y最小=–
由图可知:增区间为[16k-6,16k+2],减区间为[16k+2,16k+10](k∈Z)
上海数学(理工农医类)参考答案
一、(第1题至笫12题)
1. 1 2. 3. 4. 5. -1+i 6. 7.
8. 5 9. 10. 36 11. k=0,-1<b<1 12. a≤10
二、(第13题至笫16题)
13. C 14. A 15. A 16. D
三、(第17题至笫22题)
17.解:y=cos(x+ ) cos(x- )+ sin2x
=cos2x+ sin2x=2sin(2x+ )
∴函数y=cos(x+ ) cos(x- )+ sin2x的值域是[-2,2],最小正周期是π.
18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.
于是,BC=10 .
∵ , ∴sin∠ACB= ,
∵∠ACB<90° ∴∠ACB=41°
∴乙船应朝北偏东71°方向沿直线前往B处救援.
19.解:(1) 在四棱锥P-ABCD中,由PO⊥平面ABCD,得
∠PBO是PB与平面ABCD所成的角, ∠PBO=60°.
在Rt△AOB中BO=ABsin30°=1, 由PO⊥BO,
于是,PO=BOtg60°= ,而底面菱形的面积为2 .
∴四棱锥P-ABCD的体积V= ×2 × =2.
(2)解法一:以O为坐标原点,射线OB、OC、OP分别为x轴、y轴、z轴的正半轴建立空间直角坐标系.
在Rt△AOB中OA= ,于是,点A、B、D、P的坐标分别是A(0,- ,0),
B(1,0,0),D(-1,0,0)P(0,0, ).
E是PB的中点,则E( ,0, ) 于是 =( ,0, ), =(0, , ).
设 的夹角为θ,有cosθ= ,θ=arccos ,
∴异面直线DE与PA所成角的大小是arccos .
解法二:取AB的中点F,连接EF、DF.
由E是PB的中点,得EF‖PA,
∴∠FED是异面直线DE与PA所成角(或它的补角).
在Rt△AOB中AO=ABcos30°= =OP,
于是, 在等腰Rt△POA中,PA= ,则EF= .
在正△ABD和正△PBD中,DE=DF= .
cos∠FED= =
∴异面直线DE与PA所成角的大小是arccos .
20.证明:(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x12,y2).
当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于点A(3, )、B(3,- ).∴ =3
当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0.
当 y2=2x
得ky2-2y-6k=0,则y1y2=-6.
y=k(x-3)
又∵x1= y , x2= y ,
∴ =x1x2+y1y2= =3.
综上所述, 命题“如果直线l过点T(3,0),那么 =3”是真命题.
(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果 =3,那么该直线过点T(3,0).该命题是假命题.
例如:取抛物线上的点A(2,2),B( ,1),此时 =3,
直线AB的方程为Y= (X+1),而T(3,0)不在直线AB上.
说明:由抛物线y2=2x上的点A(x1,y1)、B(x12,y2)满足 =3,可得y1y2=-6.
或y1y2=2,如果y1y2=-6.,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(-1,0),而不过点(3,0).
21.证明(1)当n=1时,a2=2a,则 =a;
2≤n≤2k-1时, an+1=(a-1) Sn+2, an=(a-1) Sn-1+2,
an+1-an=(a-1) an, ∴ =a, ∴数列{an}是等比数列.
解(2)由(1)得an=2a , ∴a1a2…an=2 a =2 a =a ,
bn= (n=1,2,…,2k).
(3)设bn≤ ,解得n≤k+ ,又n是正整数,于是当n≤k时, bn< ;
当n≥k+1时, bn> .
原式=( -b1)+( -b2)+…+( -bk)+(bk+1- )+…+(b2k- )
=(bk+1+…+b2k)-(b1+…+bk)
= = .
当 ≤4,得k2-8k+4≤0, 4-2 ≤k≤4+2 ,又k≥2,
∴当k=2,3,4,5,6,7时,原不等式成立.
22.解(1) 函数y=x+ (x>0)的最小值是2 ,则2 =6, ∴b=log29.
(2)设0<x1<x2,y2-y1= .
当 <x1<x2时, y2>y1, 函数y= 在[ ,+∞)上是增函数;
当0<x1<x2< 时y2<y1, 函数y= 在(0, ]上是减函数.
又y= 是偶函数,于是,该函数在(-∞,- ]上是减函数, 在[- ,0)上是增函数.
(3)可以把函数推广为y= (常数a>0),其中n是正整数.
当n是奇数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是增函数, 在[- ,0)上是减函数.
当n是偶数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是减函数, 在[- ,0)上是增函数.
F(x)= +
=
因此F(x) 在 [ ,1]上是减函数,在[1,2]上是增函数.
所以,当x= 或x=2时, F(x)取得最大值( )n+( )n;
当x=1时F(x)取得最小值2n+1.
图画不到。