您现在的位置是: 首页 > 教育新闻 教育新闻
2017高考数学12题,高考数学2017题目
tamoadmin 2024-06-04 人已围观
简介1.2017年高考数学必考等差数列公式2.2017年江苏高考数学试卷结构 各题型分值是多少分2017年高考全国1卷数学题计算量有些大数学的第19道题是一个概率统计题,此题有点难度,涉及的知识点比较生疏.全国卷的数学题没有想象中那么难”“和平时训练的试题难度差不多”“感觉还好”……大多数考生反映数学没有出现怪题、偏题,难度和平时训练的相差不大。“理科数学卷压轴题21题,这是一道导数题,此题的难度并不
1.2017年高考数学必考等差数列公式
2.2017年江苏高考数学试卷结构 各题型分值是多少分
2017年高考全国1卷数学题计算量有些大
数学的第19道题是一个概率统计题,此题有点难度,涉及的知识点比较生疏.
全国卷的数学题没有想象中那么难”“和平时训练的试题难度差不多”“感觉还好”……大多数考生反映数学没有出现怪题、偏题,难度和平时训练的相差不大。
“理科数学卷压轴题21题,这是一道导数题,此题的难度并不大。对许多考生来说,难度比预想的要容易一些。”
在理科数学试卷里,选择、填空的压轴题难度比平时训练的要简单一些,但是,一些应用题的计算量有些大,“有的考生称没有做完试卷。”
2017年高考数学必考等差数列公式
f'(x)=2ax+(2-a)-1/x
=(2ax^2+(2-a)x-1)/x
=(2x-1)(ax+1)/x
a>1
令f'(x)>=0
x<=-1/a或x>=1/2
定义域是x>0
∴x>=1/2
增区间是[1/2,+∞),减区间是(0,1/2]
当1/a>=1/2时
f(x)在区间[1/a,1]内的最大值
=f(1)
=a+2-a-0
=2不是ln3
∴1/a<1/2
a>2
f(x)在区间[1/a,1]内的最大值
=f(1/a)
=a*1/a^2+(2-a)/a-ln(1/a)
=1/a+2/a-1+lna
=3/a-1+lna
=ln3
∴a=3符合a>2
综上a=3
如果您认可我的回答,请点击“为满意答案”,祝学习进步!
2017年江苏高考数学试卷结构 各题型分值是多少分
等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。
高中数学知识点:等差数列公式
等差数列公式an=a1+(n-1)d
a1为首项,an为第n项的通项公式,d为公差
前n项和公式为:Sn=na1+n(n-1)d/2
Sn=(a1+an)n/2
若m+n=p+q则:存在am+an=ap+aq
若m+n=2p则:am+an=2ap
以上n.m.p.q均为正整数
解析:第n项的值an=首项+(项数-1)?公差
前n项的和Sn=首项?n+项数(项数-1)公差/2
公差d=(an-a1)?(n-1)
项数=(末项-首项)?公差+1
数列为奇数项时,前n项的和=中间项?项数
数列为偶数项,求首尾项相加,用它的和除以2
等差中项公式2an+1=an+an+2其中{an}是等差数列
通项公式:公差?项数+首项-公差
高中数学知识点:等差数列求和公式
若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:
S=(a1+an)n?2
即(首项+末项)?项数?2
前n项和公式
注意:n是正整数(相当于n个等差中项之和)
等差数列前N项求和,实际就是梯形公式的妙用:
上底为:a1首项,下底为a1+(n-1)d,高为n。
即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。
高中数学知识点:推理过程
设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:
当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。
注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。
求和推导
证明:由题意得:
Sn=a1+a2+a3+。。。+an①
Sn=an+a(n-1)+a(n-2)+。。。+a1②
①+②得:
2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)
Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2
Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)
基本公式
公式 Sn=(a1+an)n/2
等差数列求和公式
Sn=na1+n(n-1)d/2; (d为公差)
Sn=An2+Bn; A=d/2,B=a1-(d/2)
和为 Sn
首项 a1
末项 an
公差d
项数n
表示方法
等差数列基本公式:
末项=首项+(项数-1)?公差
项数=(末项-首项)?公差+1
首项=末项-(项数-1)?公差
和=(首项+末项)?项数?2
差:首项+项数?(项数-1)?公差?2
说明
末项:最后一位数
首项:第一位数
项数:一共有几位数
和:求一共数的总和
本段通项公式
首项=2?和?项数-末项
末项=2?和?项数-首项
末项=首项+(项数-1)?公差:a1+(n-1)d
项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1
公差= d=(an-a1)/n-1
如:1+3+5+7+?99 公差就是3-1
将a1推广到am,则为:
d=(an-am)/n-m
基本性质
若 m、n、p、q?N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq(等差中项)
1-14是填空题,每题5分,15-20是解答题,前三题每题14分,后三题每题16分,每个解答题有2到3小题,共160分。
理科还有附加题,第21题是四选二,21a是平面几何证明,21b是矩阵,21c是坐标系与参数方程,21d是不等式,考生从四条中选两题作答,每题10分,满分20分。22和23题不确定,可以考概率分布,空间向量,解析几何(侧重抛物线),计数原理,数学归纳法,二项式定理等,也是每题10分,附加题一共40分。