您现在的位置是: 首页 > 教育新闻 教育新闻

高考数学三卷答案文科,高考数学答案三卷文科2020

tamoadmin 2024-06-12 人已围观

简介1.2022数学高考试卷(江苏2022数学高考试卷)2.2022年高考数学甲卷答案文科-全国甲卷数学文科试卷及答案3.2012全国新课标卷文科数学A卷答案TXT格式的4.2023高考文理科数学卷子一样吗5.急求2012福建高考文科数学题目及答案 2022年全国高考将在6月7日开考,相信大家都非常想要知道全国甲卷文科数学科目的答案及解析,我就为大家带来2022高考数学文科真题及答案完整解析版(全国甲

1.2022数学高考试卷(江苏2022数学高考试卷)

2.2022年高考数学甲卷答案文科-全国甲卷数学文科试卷及答案

3.2012全国新课标卷文科数学A卷答案TXT格式的

4.2023高考文理科数学卷子一样吗

5.急求2012福建高考文科数学题目及答案

高考数学三卷答案文科,高考数学答案三卷文科2020

2022年全国高考将在6月7日开考,相信大家都非常想要知道全国甲卷文科数学科目的答案及解析,我就为大家带来2022高考数学文科真题及答案完整解析版(全国甲卷)。

2022年全国 卷答案及试卷汇总

点击即可查看

大家可以在本文前后输入高考分数查看能上的大学,了解更多院校详细信息。

一、全国 卷高考文科数学真题试卷

二、全国 卷高考数学真题答案解析

2022数学高考试卷(江苏2022数学高考试卷)

本期为大家整理2022全国乙卷数学答案相关内容,一起来看看使用全国乙卷数学试卷的河南、安徽等地,文科数学、理科数学的试卷解析及参考答案等相关数据吧!

2022年使用全国乙卷数学的省份有:河南、山西、江西、安徽、甘肃、青海、内蒙古、黑龙江、吉林、宁夏、新疆、陕西,共12省市区。

这些地区的数学考试分为文科数学、理科数学两种。接下来就一起看看这些地区的文数试卷及答案以及理数试卷及答案吧!

2022年全国高考数学科目考试时间为6月7日,我们将在考试结束后,第一时间为大家更新全国乙卷文科数学答案解析相关内容,请保持关注!

2022年高考数学甲卷答案文科-全国甲卷数学文科试卷及答案

今天小编辑给各位分享2022数学高考试卷的知识,其中也会对江苏2022数学高考试卷分析解答,如果能解决你想了解的问题,关注本站哦。

你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?

今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。

2022全国新高考1卷数学难吗?压轴题有何立意?

对于这个高考的试卷题是非常的难的,因为这次的高考的试卷的题目基本上都是来自于那些非常偏非常难的题,那么正是为了测试这些学生的水平而设立的题目,因为正式的考试是为了选拔这些学生的一次考试,那么这仍然是选择了那些非常偏的题,那么一般来说这些学生在上课的时候都是不会去做那种非常偏非常难的题,那么出现了这种非常难非常偏的题的话,那么这些学生就会遇到了困难,至于压轴题的话,压轴题就是更难的,一般压轴题都需要考验一个学生的逻辑思维能力,去做这个题,那么才能够把这个题目给做出来的

选拔性考试

一般来说这个高考的数学试题呢,那么都是以选拔这些学生的一种难度来出的那么自然人是非常的难的,特别考验这些学生的逻辑思维能力,以运用这个知识的这个能力,并不像填空题一样,只要把这个答案填进去就OK了那么一般来说这数学试题呢,都是很考验这些学生的数学逻辑思维,而运用这个知识的能力的,而且是需要灵活的运用这个知识去写这些题目的,所以说就在这个高考的数学试题是非常的难的

压轴题的意义

一般来说呢,压轴题更是最难的一道题,毕竟是压轴的嘛,所以说难度是升了一个阶段的,那么也是很正常,毕竟一张试卷的压轴题,无论是什么试卷的压轴题那么都是非常的难审正常的事情,因为到了压轴题之后那么一般都是考验学生的灵活运用知识的逻辑思维能力,基本上都要运用上去,那么才能够把这道题给做出来,而且所需要的知识量也是非常的大的

总的来说那么高考数学试卷的题目都是非常的难,是考验这些学生灵活的运用知识的一个题目,那么需要这些学生非常的努力的去运用自己所学的知识,不仅仅所需要的知识,还需要自己灵活运用知识的能力,那么才能够将这些题目做出来

2022年天津高考数学试卷及答案

为了帮助大家全面了解2022年天津高考数学卷,大家就能知道2022年天津高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年天津高考数学试卷及答案,以供大家参考!

2022年天津高考数学试卷

截止目前,2022年天津高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学试卷,供大家对照、估分、模拟使用。

2022年天津高考数学答案解析

截止目前,2022年天津高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年天津高考数学答案解析,供大家对照、估分、模拟使用。

高考录取规则及志愿设置

志愿设置

提前艺术、体育本科设置1个第一院校志愿和1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;

提前一批本科和提前二批本科批次分别设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

本科面向贫困地区专项计划第一、二批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;

免费医学定向生、农科生院校设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。

第一批本科批次分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿;

第一批本科特殊类型招生分公示类和非公示类各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。

第一批本科艺术本科院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

第二批本科类批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

第二批本科艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。

第二批本科C类艺术、体育类院校分别设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

第二批本科特殊类型招生各设置1个院校志愿和6个专业志愿以及“是否同意专业调剂”志愿。

高本贯通批次设置8个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

高本贯通艺术类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。

提前专科批次设置1个第一院校志愿、1个第二院校志愿和1个第三院校志愿,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

专科批次设置9个平行院校志愿,排列顺序为A、B、C、D、E、F、G、H、I,每所院校设置6个专业志愿和“是否同意专业调剂”志愿。

专科批次艺术、体育类院校分别设置1个第一院校志愿、1个第二院校志愿,每所院校志愿设置6个专业志愿和“是否同意专业调剂”志愿。

录取原则

高校招生实行两种投档模式。

平行志愿投档模式:根据“考生之间,分数优先;考生志愿,遵循顺序”的投档原则,先分科类将考生按成绩从高分到低分排序,再按照顺序对考生逐个进行投档;对某考生投档时,遵循该考生填报的多个平行志愿院校依次检索判断,当检索到该考生填报的某个院校有调档缺额时,即将该考生档案投放到该院校。

实行平行志愿的批次和科类:本科面向贫困地区专项计划批、第一批本科、第二批本科、高本贯通批、专科批的文史和理工两个科类。

平行志愿投档模式的考生成绩排序规则是:

1)先按考生特征总分从高到低排序;

2)考生总分相同时,再按单科成绩依次从高到低排序。

单科成绩排序的科目顺序是:

文史类:①语文;②数学;③文科综合

理工类:①数学;②语文;③理科综合

3)上年被录取后未报到考生将排在同分数的最后,考生总分相同时,按单科成绩依次从高到低排序。

非平行志愿投档模式:根据“志愿优先”的投档原则,先投第一志愿,当院校第一志愿生源不足时,再依次投第二志愿、第三志愿。

2022年天津高考数学试卷及答案相关文章:

★2022年高考数学答题技巧

★2022全国各省市高考使用全国几卷

★2022全国高考试卷分几类

★2022年北京高考数学试卷

★2022高考数学卷分数分布一览

★2022年高考数学必考知识点总结最新

★高三数学教学2021工作总结模板

★2022年高考时间及考试科目安排表公布

★2022年天津高考一分一段预览表

★2022天津高考一分一段重磅揭晓

2022新高考全国卷的数学题是什么难度?有多少基础分?

随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。

一、2022年新高考全国卷的数学题处于中上等难度

根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分

一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结

总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。

2022年浙江高考数学试卷

为了帮助大家全面了解2022年浙江高考数学卷,这样,大家就能知道2022年浙江高考数学难不难?有哪些题型?考了哪些知识点?以及数学试卷的解题思路和方法有哪些?下面是我给大家带来的2022年浙江高考数学试卷及答案,以供大家参考!

2022年浙江高考数学试卷

截止目前,2022年浙江高考数学试卷还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学试卷,供大家对照、估分、模拟使用。

2022年浙江高考数学答案解析

截止目前,2022年浙江高考数学答案解析还未出炉,待高考结束后,力力会第一时间更新2022年浙江高考数学答案解析,供大家对照、估分、模拟使用。

高考填报志愿的技巧

各批次志愿填报注意落差

“平行志愿”不是“平等志愿”,也不是“平行录取”。考生填报的平行志愿有自然顺序,并不是只要成绩达到所填报的4个平行志愿院校录取条件,就可能会被4所院校同时录取。实际上,只要考生档案投到一所志愿高校后,就不会到其他高校,对每个考生而言投档录取机会只有一次。

注重学校录取平均分

考生在填报志愿时,首先要了解自己在学校、区所处的位次,这个是最关键的参考因素。可根据自己一模、二模的成绩,看看自己在区、学校的排名,并排一排自己在全市的位次所在。咨询老师往年该名次段考生的去向,掌握自己可能被录取的学校范围,然后再根据个人的兴趣爱好以及家庭背景等因素,在这个范围内做选择。

避免被调剂慎写“不服从调剂”

选学校退一步,选专业进一步高考填报志愿中,究竟是选学校,还是选专业,是考生和家长最难把握的问题。尤其是对各批次的中分段、低分段考生来说,这一难题最为显现。选好的学校,有可能要舍弃好专业:想填个自己喜欢的专业,学校上就得有所顾忌,因为好学校的好专业肯定是要“挤破头”的。

高考先填志愿还是先出分数

现在都是先高考完知道分数之后再填志愿。高考考生填志愿时所报考的学校层次要根据考生所在省份的分数线决定,所以现在一般都是先出成绩再填相关志愿。

在查到高考分数之后,就可以提前预估自己分数可以报的学校和专业,现在是填报的平行志愿,考生可以一次性填报多所高校,多个专业,按照惯例,填报志愿一般是在出分后,在这之前,考生们要确定好自己的意向学校和专业,认真考虑,不要盲目或者瞎填报。

填报高考志愿时,一定要看清本省志愿及录取方式,是平行志愿还是顺序志愿。现在大部分地区都采取平行志愿模式录取,但是也有部分地区或者部分录取批次专仍然采取顺序志愿录取,二者录取原理是不同的,所以在报考时填写的院校专业顺序也要区别对待。

2022年浙江高考数学试卷相关文章:

★2022年高考数学必考知识点总结最新

★2022高考数学选择题答题方法

★高考数学选择题解题方法2022

★2022高考数学必考知识点考点总结大全

★2022年高考数学考前冲刺指导

★2022年河北高考时间表及注意事项

★2022年数学高考知识点

★2022高考数学必考知识点归纳最新

★2022年北京高考数学试卷

★2022年高考数学前十天如何复习最有效

2022新高考全国一卷数学试卷及答案解析

为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!

2022新高考全国一卷数学试卷

2022新高考全国一卷数学试卷答案解析参考

高考怎样填志愿

1、选择哪个学校

填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。

2、选择什么专业

选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。

3、提前了解各个学校的情况

在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。

服从调剂意味着什么

1、增加了一次录取机会

在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。

如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。

2、服从调剂,不一定会被调剂到其他专业

从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。

如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。

3、专业调剂会调到哪里去?

专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。

高考之后可以去哪玩

1、云南

云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。

云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。

2、杭州

“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼

3、重庆

说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。

4、厦门

厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜

5、西藏

西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。

6、九寨沟

九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。

7、桂林

“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。

2022新高考全国一卷数学试卷及答案解析相关文章:

★2022高考北京卷数学真题及答案解析

★2022高考全国乙卷试题及答案

★2022全国甲卷高考数学文科试卷及答案解析

★2022高考甲卷数学真题试卷及答案

★2022年北京高考数学试卷

★2022高考全国甲卷数学试题及答案

★2022全国新高考I卷语文试题及答案

★2022全国新高考Ⅰ卷英语试题及答案解析

★2022年全国新高考II卷数学真题及答案

★2022北京卷高考文科数学试题及答案解析

2012全国新课标卷文科数学A卷答案TXT格式的

本期为大家整理全国甲卷数学文科试卷解析及参考答案相关内容,供大家估分对答案使用。甲卷省份有四川、云南、广西、贵州等地,一起来看看这些地区2022年高考数学甲卷答案文科是什么,以及全国甲卷数学文科试卷及答案2022年具体内容。

1. 2022年使用的地区

2022年使用全国甲卷数学文科试卷的省份地区有:四川省、广西、贵州省、云南省和西藏。

这五个地区的考生2022年高考采用传统高考模式,考生分为文科、理科两类,文科使用数学(文)试卷,理科使用数学(理)试卷。

2. 2022年甲卷数学考试时间

2022年6月7日15:00-17:00

3. 更多相关数据

我们可以从 本文下方“输入分数看能上的大学”一栏,输入自己的成绩、所在省份、选考科目,一键进入圆梦志愿 。

除了能看到 分数线、一分一段 表等更多高考数据, 还能查看其通过大数据分析及云计算处理后,为我们科学评估出的所有能上的大学 。

以下答案仅为参考答案,我们将在官方公布标准答案之后第一时间给大家整理汇总在此,请保持关注哦!

2023高考文理科数学卷子一样吗

tupainban2012年高考文科数学试题解析(全国课标)

一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则

(A)A?B(B)B?A(C)A=B(D)A∩B=?

命题意图本题主要考查一元二次不等式解法与集合间关系,是简单题.

解析A=(-1,2),故B?A,故选B.

(2)复数z=?的共轭复数是?

(A)(B)(C)(D)?

命题意图本题主要考查复数的除法运算与共轭复数的概念,是简单题.

解析∵?=?=?,∴?的共轭复数为?,故选D.

(3)在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线?y=12x+1上,则这组样本数据的样本相关系数为?

(A)-1(B)0(C)12(D)1

命题意图本题主要考查样本的相关系数,是简单题.

解析有题设知,这组样本数据完全正相关,故其相关系数为1,故选D.

(4)设?,?是椭圆?:?=1(?>?>0)的左、右焦点,?为直线?上一点,△?是底角为?的等腰三角形,则?的离心率为

.?...?

命题意图本题主要考查椭圆的性质及数形结合思想,是简单题.

解析∵△?是底角为?的等腰三角形,

∴?,?,∴?=?,∴?,∴?=?,故选C.

(5)已知正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,若点(x,y)在△ABC内部,则?的取值范围是

(A)(1-3,2)?(B)(0,2)?

(C)(3-1,2)?(D)(0,1+3)

命题意图本题主要考查简单线性规划解法,是简单题.

解析有题设知C(1+?,2),作出直线?:?,平移直线?,有图像知,直线?过B点时,?=2,过C时,?=?,∴?取值范围为(1-3,2),故选A.

(6)如果执行右边的程序框图,输入正整数?(?≥2)和实数?,?,…,?,输出?,?,则

.?+?为?,?,…,?的和?

.?为?,?,…,?的算术平均数

.?和?分别为?,?,…,?中的最大数和最小数

.?和?分别为?,?,…,?中的最小数和最大数

命题意图本题主要考查框图表示算法的意义,是简单题.

解析由框图知其表示的算法是找N个数中的最大值和最小值,?和?分别为?,?,…,?中的最大数和最小数,故选C.

21世纪教育网(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为

.6.9.12.18

命题意图本题主要考查简单几何体的三视图及体积计算,是简单题.

解析由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为?=9,故选B.

(8)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为?

(A)6π(B)43π(C)46π(D)63π

命题意图

解析

(9)已知?>0,?,直线?=?和?=?是函数?图像的两条相邻的对称轴,则?=

(A)π4(B)π3?(C)π2?(D)3π4

命题意图本题主要考查三角函数的图像与性质,是中档题.

解析由题设知,?=?,∴?=1,∴?=?(?),

∴?=?(?),∵?,∴?=?,故选A.

(10)等轴双曲线?的中心在原点,焦点在?轴上,?与抛物线?的准线交于?、?两点,?=?,则?的实轴长为

..?.4?.8

命题意图本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.

解析由题设知抛物线的准线为:?,设等轴双曲线方程为:?,将?代入等轴双曲线方程解得?=?,∵?=?,∴?=?,解得?=2,

∴?的实轴长为4,故选C.

(11)当0<?≤12时,?,则a的?取值范围是?

(A)(0,22)(B)(22,1)?(C)(1,2)(D)(2,2)

命题意图本题主要考查指数函数与对数函数的图像与性质及数形结合思想,是中档题.

解析由指数函数与对数函数的图像知?,解得?,故选A.

(12)数列{?}满足?,则{?}的前60项和为

(A)3690?(B)3660?(C)1845(D)1830

命题意图本题主要考查灵活运用数列知识求数列问题能力,是难题.

解析法1有题设知

=1,①?=3?②=5?③?=7,?=9,

=11,?=13,?=15,?=17,?=19,?,

……

∴②-①得?=2,③+②得?=8,同理可得?=2,?=24,?=2,?=40,…,

∴?,?,?,…,是各项均为2的常数列,?,?,?,…是首项为8,公差为16的等差数列,

∴{?}的前60项和为?=1830.

法2可证明:

二.填空题:本大题共4小题,每小题5分。

(13)曲线?在点(1,1)处的切线方程为________

命题意图本题主要考查导数的几何意义与直线方程,是简单题.

解析∵?,∴切线斜率为4,则切线方程为:?.

(14)等比数列{?}的前n项和为Sn,若S3+3S2=0,?则公比?=_______

命题意图本题主要考查等比数列n项和公式,是简单题.

解析当?=1时,?=?,?=?,由S3+3S2=0得?,?=0,∴?=0与{?}是等比数列矛盾,故?≠1,由S3+3S2=0得?,?,解得?=-2.

(15)?已知向量?,?夹角为?,且|?|=1,|?|=?,则|?|=.

命题意图.本题主要考查平面向量的数量积及其运算法则,是简单题.

解析∵|?|=?,平方得?,即?,解得|?|=?或?(舍)

(16)设函数?=(x+1)2+sinxx2+1的最大值为M,最小值为m,则M+m=____

命题意图本题主要考查利用函数奇偶性、最值及转换与化归思想,是难题.

解析?=?,

设?=?=?,则?是奇函数,

∵?最大值为M,最小值为?,∴?的最大值为M-1,最小值为?-1,

∴?,?=2.

三、 解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)已知?,?,?分别为?三个内角?,?,?的对边,?.

(Ⅰ)求?;

(Ⅱ)若?=2,?的面积为?,求?,?.

命题意图本题主要考查正余弦定理应用,是简单题.

解析(Ⅰ)由?及正弦定理得

由于?,所以?,

又?,故?.

(Ⅱ)?的面积?=?=?,故?=4,

而故?=8,解得?=2.

18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。?

(Ⅱ)花店记录了100天?玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n 14 15 16 17 18 19 20

频数 10 20 16 16 15 13 10

(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天?的日利润(单位:元)的平均数;

(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.

命题意图本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.

解析(Ⅰ)当日需求量?时,利润?=85;

当日需求量?时,利润?,

∴?关于?的解析式为?;

(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为

=76.4;

(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为

(19)(本小题满分12分)如图,三棱柱?中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA1,D是棱AA1的中点。

(I)?证明:平面?⊥平面?

(Ⅱ)平面?分此棱柱为两部分,求这两部分体积的比.

命题意图本题主要考查空间线线、线面、面面垂直的判定与性质及几何体的体积计算,考查空间想象能力、逻辑推理能力,是简单题.

解析(Ⅰ)由题设知BC⊥?,BC⊥AC,?,∴?面?,又∵?面?,∴?,

由题设知?,∴?=?,即?,

又∵?,∴?⊥面?,∵?面?,

∴面?⊥面?;

(Ⅱ)设棱锥?的体积为?,?=1,由题意得,?=?=?,

由三棱柱?的体积?=1,

∴?=1:1,?∴平面?分此棱柱为两部分体积之比为1:1.

(20)(本小题满分12分)设抛物线?:?(?>0)的焦点为?,准线为?,?为?上一点,已知以?为圆心,?为半径的圆?交?于?,?两点.

(Ⅰ)若?,?的面积为?,求?的值及圆?的方程;

(Ⅱ)若?,?,?三点在同一条直线?上,直线?与?平行,且?与?只有一个公共点,求坐标原点到?,?距离的比值.

命题意图本题主要考查圆的方程、抛物线的定义、直线与抛物线的位置关系、点到直线距离公式、线线平行等基础知识,考查数形结合思想和运算求解能力.

解析设准线?于?轴的焦点为E,圆F的半径为?,

则|FE|=?,?=?,E是BD的中点,

(Ⅰ)?∵?,∴?=?,|BD|=?,

设A(?,?),根据抛物线定义得,|FA|=?,

∵?的面积为?,∴?=?=?=?,解得?=2,

∴F(0,1),?FA|=?,?∴圆F的方程为:?;

(Ⅱ)?解析1∵?,?,?三点在同一条直线?上,?∴?是圆?的直径,?,

由抛物线定义知?,∴?,∴?的斜率为?或-?,

∴直线?的方程为:?,∴原点到直线?的距离?=?,

设直线?的方程为:?,代入?得,?,

∵?与?只有一个公共点,?∴?=?,∴?,

∴直线?的方程为:?,∴原点到直线?的距离?=?,

∴坐标原点到?,?距离的比值为3.

解析2由对称性设?,则?

点?关于点?对称得:?

得:?,直线?

切点?

直线?

坐标原点到?距离的比值为?。

(21)(本小题满分12分)设函数f(x)=?ex-ax-2

(Ⅰ)求f(x)的单调区间

(Ⅱ)若a=1,k为整数,且当x>0时,(x-k)?f?(x)+x+1>0,求k的最大值

请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.

22.?(本小题满分10分)选修4-1:几何选讲

如图,D,E分别是△ABC边AB,AC的中点,直线DE交△ABC的外接圆与F,G两点,若CF∥AB,证明:

(Ⅰ)?CD=BC;

(Ⅱ)△BCD∽△GBD.

命题意图本题主要考查线线平行判定、三角形相似的判定等基础知识,是简单题.

解析(Ⅰ)?∵D,E分别为AB,AC的中点,∴DE∥BC,

∵CF∥AB,∴BCFD是平行四边形,

∴CF=BD=AD,连结AF,∴ADCF是平行四边形,

∴CD=AF,

∵CF∥AB,?∴BC=AF,?∴CD=BC;

(Ⅱ)?∵FG∥BC,∴GB=CF,

由(Ⅰ)可知BD=CF,∴GB=BD,

∵∠DGB=∠EFC=∠DBC,?∴△BCD∽△GBD.

23.?(本小题满分10分)选修4-4:坐标系与参数方程

已知曲线?的参数方程是?(?是参数),以坐标原点为极点,?轴的正半轴为极轴建立极坐标系,曲线?:的极坐标方程是?=2,正方形ABCD的顶点都在?上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,?).

(Ⅰ)求点A,B,C,D的直角坐标;

(Ⅱ)设P为?上任意一点,求?的取值范围.

命题意图本题考查了参数方程与极坐标,是容易题型.

解析(Ⅰ)由已知可得?,?,

,?,

即A(1,?),B(-?,1),C(―1,―?),D(?,-1),

(Ⅱ)设?,令?=?,

则?=?=?,

∵?,∴?的取值范围是[32,52].

24.(本小题满分10分)选修4-5:不等式选讲

已知函数?=?.

(Ⅰ)当?时,求不等式?≥3的解集;

(Ⅱ)?若?≤?的解集包含?,求?的取值范围.

命题意图本题主要考查含绝对值不等式的解法,是简单题.

解析(Ⅰ)当?时,?=?,

当?≤2时,由?≥3得?,解得?≤1;

当2<?<3时,?≥3,无解;

当?≥3时,由?≥3得?≥3,解得?≥8,

∴?≥3的解集为{?|?≤1或?≥8};

(Ⅱ)?≤,

当?∈[1,2]时,?=?=2,

∴?,有条件得?且?,即?,

故满足条件的?的取值范围为[-3,0].

急求2012福建高考文科数学题目及答案

2023高考文理科数学卷子不一样。

2023年高中毕业考试文理科数学考试试卷明显不同的。

针对2023年,有部分省份已经进入了新高中毕业考试的阶段,既然如此那,就是高中毕业考试考试试卷差不多的。但针对陕西,安徽等省份,还是采取的是文理分科。

从2023年起,自主出题的省市减少到北京、天津、上海、浙江四地。且浙江也已经明确,根据新高中毕业考试改革要求,自2023年起,语数英三门科目均使用全国卷。

在高中毕业考试新方案中,文理不分科已成各地高中毕业考试改革趋势,高中毕业考试科目“3+3”也成很多省份未来高中毕业考试的新模式。

“3+3”模式是指,报考普通本科院校的学员,其高中毕业考试成绩将由语文、数学、外语3门统一高中毕业考试成绩和学员选考的3门普通高中学业水平考试等级性考试科目成绩构成。

学生不可以再分文理科,可以自主选择选考科目。就3门选考科目来说,各地多采取“6选3”模式,即从思想政治、历史、地理、物理、化学、生物6个科目中自主选择3科作为考试科目。值得注意的是,浙江采用的是“7选3”模式,除了以上所提到的6科,还多了“技术(含通用技术和信息技术)”这项科目。

有关信息:

在分值设置上,大部分省份明确统一高中毕业考试的语文、数学、外语每科满分150分,学生自选3门科目每门满分100分,满分合计750分。

不过,上海、西藏带来一定不一样,明确3门选考科目每门70分,高中毕业考试成绩满分满分660分,除开这点江苏高中毕业考试科目分值暂时还没有最后确定,但明确比现行的480分要高。海南要求以每个科目原始分转换后的标准分呈现学员成绩,这是现在仅仅只有采取标准分这一计分方式的省份。

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

2012年普通高等学校招生全国统一考试福建卷(数学文)word版

数学试题(文史类)

第I卷(选择题?共60分)

一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数(2+i)2等于

A.3+4i B.5+4i C.3+2i D.5+2i

2.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是

A.N?M B.M∪N=M C.M∩N=N D.M∩N={2}

3.已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是

A.x=- B.x-1 C.x=5 D.x=0

4.?一个几何体的三视图形状都相同,大小均等,那么这个几何体不可一世

A?球? B? 三棱锥? C? 正方体?D?圆柱?

5?已知双曲线?-?=1的右焦点为(3,0),则该双曲线的离心率等于

A ? B C ?D ?

6? 阅读右图所示的程序框图,运行相应的程序,输出s值等于?

A?-3? B? -10? C? 0 D? -2?

7.直线x+?-2=0与圆x2+y2=4相交于A,B两点,则弦AB的长度等于

A.? B?.?C.? D.1

8.函数f(x)=sin(x-?)的图像的一条对称轴是

A.x= B.x= C.x=- D.x=-?

9.设?,则f(g(π))的值为

A?1 ? B? 0 ?C? -1 ?D? π

10.若直线y=2x上存在点(x,y)满足约束条件?则实数m的最大值为

A.-1? B.1? C. D.2

11.数列{an}的通项公式?,其前n项和为Sn,则S2012等于

A.1006 B.2012 C.503 D.0

12.已知f(x)=x?-6x?+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.

其中正确结论的序号是

A.①③ B.①④ C.②③ D.②④

第Ⅱ卷(非选择题共90分)

二、填空题:本大题共4小题,每小题4分,共16分。把答案填在答题卡的相应位置。

13.在△ABC中,已知∠BAC=60°,∠ABC=45°,?,则AC=_______。

14.一支田径队有男女运动员98人,其中男运动员有56人。按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_______。

15.已知关于x的不等式x2-ax+2a>0在R上恒成立,则实数a的取值范围是_________。

16.某地图规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的路线图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.

现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。

三、解答题:本大题共6小题,共74分。解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分12分)

在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.

(Ⅰ)求an和bn;

(Ⅱ)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率。

18.(本题满分12分)

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

(I)求回归直线方程?=bx+a,其中b=-20,a=?-b?;

(II)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)

19.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。

(1) 求三棱锥A-MCC1的体积;

(2) 当A1M+MC取得最小值时,求证:B1M⊥平面MAC。

20.?(本小题满分13分)

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。

(1)sin213°+cos217°-sin13°cos17°

(2)sin215°+cos215°-sin15°cos15°

(3)sin218°+cos212°-sin18°cos12°

(4)sin2(-18°)+cos248°-?sin2(-18°)cos248°

(5)sin2(-25°)+cos255°-?sin2(-25°)cos255°

Ⅰ?试从上述五个式子中选择一个,求出这个常数?

Ⅱ?根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论。

21.(本小题满分12分)

如图,等边三角形OAB的边长为?,且其三个顶点均在抛物线E:x2=2py(p>0)上。

(1) 求抛物线E的方程;

(2) 设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明以PQ为直径的圆恒过y轴上某定点。

22.(本小题满分14分)

已知函数?且在?上的最大值为?,

(1)求函数f(x)的解析式;

(2)判断函数f(x)在(0,π)内的零点个数,并加以证明。

文章标签: # 高考 # 志愿 # 2022