您现在的位置是: 首页 > 教育新闻 教育新闻
高三数学高考_高三数学高考真题
tamoadmin 2024-06-27 人已围观
简介1.高考数学函数答题方法和技巧2.备战高考,高三学生的数学要想取得高分,需要怎么样掌握数学技巧呢?3.2021年高考知识点最后盘点-高考数学必考知识点归纳4.高考数学怎么复习5.高三学生迎战高考数学,需要怎么样主动学习、多思多想呢?6.高三数学一轮复习用什么样的模式效果最好呢?高考越来越近,高三的同学们也进入了紧张的复习,今天小编给大家整理了高考数学复习必看的六个答题技巧,希望能给各位备考的同学们
1.高考数学函数答题方法和技巧
2.备战高考,高三学生的数学要想取得高分,需要怎么样掌握数学技巧呢?
3.2021年高考知识点最后盘点-高考数学必考知识点归纳
4.高考数学怎么复习
5.高三学生迎战高考数学,需要怎么样主动学习、多思多想呢?
6.高三数学一轮复习用什么样的模式效果最好呢?
高考越来越近,高三的同学们也进入了紧张的复习,今天小编给大家整理了高考数学复习必看的六个答题技巧,希望能给各位备考的同学们一点帮助!
1调整好状态,控制好自我
(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5—10分钟内。建议同学们提前15—20分钟到达考场。
2通览试卷,树立自信
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。
3提高解选择题的速度,填空题的准确度
数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4审题要慢,做题要快,下手要准
题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
5保质保留拿下中下等题目
中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
6要牢记分段得分的原则,规范答题
会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
难题要学会:
(1)缺步解答:聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,能解决多少就解决多少,能演算几步就写几步。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半。
(2)跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以假定某些结论是正确的往后推,看能否得到结论,或从结论出发,看使结论成立需要什么条件。如果方向正确,就回过头来,集中力量攻克这一“卡壳处”。如果时间不允许,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。今年仍是网上阅卷,望广大考生规范答题,减少隐形失分。
高考数学函数答题方法和技巧
高三文科数学高考不考放缩法。依照高考考纲高三文科数学高考不考放缩法,数学归纳法,前多年也没有考过,但是高三理科数学高考考放缩法和数学归纳法。
放缩法是指要让不等式A<B成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种方法便是放缩法,是不等式问题里的一种方法。
放缩法是贯穿证明不等式始终的指导变形方向的一种思考方法。
放缩法常见技巧
舍掉(或加进)一些项、在分式中放大或缩小分子或分母、应用基本不等式放缩(例如均值不等式)、应用函数的单调性进行放缩、根据题目条件进行放缩等方法。
/iknow-pic.cdn.bcebos.com/7a899e510fb30f247b39798bc695d143ac4b0392"target="_blank"title=""class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/7a899e510fb30f247b39798bc695d143ac4b0392?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc=""/>
备战高考,高三学生的数学要想取得高分,需要怎么样掌握数学技巧呢?
#高三# 导语怎么答好高考数学函数题? 整理了高考数学函数题答题技巧和方法,供参考。
高考函数体命题方向
高考函数与方程思想的命题主要体现在三个方面
①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;
②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;
③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。
高考数学函数题答题技巧
对数函数
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
(5)显然对数函数无界。
指数函数
指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得
可以得到:
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于x轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
函数的性质与图象
函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.
复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:
1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.
2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数值和最小值的常用方法.
3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.
这部分内容的重点是对函数单调性和奇偶性定义的深入理解.
函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.
对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.
这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.
2021年高考知识点最后盘点-高考数学必考知识点归纳
高三学生学好数学,基本的知识点要全面掌握,需要了解知识点的延伸变化,需要提升对知识的综合运用和理解能力。
一、提升数学思维能力
高三学生要想考好数学,就要努力提高学习的数学的思维能力。在解答数学题时,要着重研究解题的思维过程。只有弄清了基本的数学方法和基本的数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一个数学问题的多种途径,注重培养数学思维能力,才能最终把数学学好。
数学不是光靠记忆就可以的,更注重学习方法和解题思路,要学会举一反三,这样才能找到最适合的解题思路。做题时,高三学生要清楚自己先做哪一步,或是先去那一个知识点入手,明白了思路才更容易解题。
二、简单题不失误,解得出难题
高三学生对待简单题、中档题要注意,有些学生往往在简单题上会失误,落入出题人的陷阱,甚至丢分的比值比难题还高。
简单题怎么样才能不失误?关键的一点是:学会刻意练习。高三学生建立数学各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;数学的学习要有一定题量的积累,达到举一反三、运用自如的水平。基础知识、基本技能和基本思想方法是高考的基调。复习时还要“狠抓三基”,系统复习,形成知识网络结构,以不变应万变。
解难题的需要掌握关键点:稳健快速的做出第一问,压轴题的第一问是基础题。掌握常见的数学解题“套路” ,对于难题才有下手点。注意课内知识的延伸。面对难题,先猜一猜答案猜出来,或者试一试答案,再琢磨出标准解法。解题,需要用最规范的形式作答,保证过程分不丢分。
三、做好选择题
高三学生做选择题需要注意审题。明白题目求什么,已知什么,求、知之间有什么关系,把题目要求彻底搞清楚了再动手答题。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,才能为形成解题思路提供全面可靠的依据。
高三学生做选择题需要从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,再解答陌生或不太熟悉的题目。最后,再去攻克那些把握不大或无从下手的题。
数学选择题要注意对符号、概念、公式、定理及性质等的理解和使用,需要挖掘隐含条件,注意易错易混点,把握应用性问题的限制条件。
高三学生处理解答题需要控制时间。不要超过40分钟,25分钟左右完成选择题是理想目标,争取又快又准,为后面的解答题留下充裕的时间,需要防止“超时失分”。
在高考时,有些同学往往因为时间不够导致数学试卷不能写完,掌握数学解题思想,掌握数学考试技巧,可以快速找到解题思路,节约思考时间,为取得数学高分打好基础。
高考数学怎么复习
距离2021年高考已经不足两周的时间了,不知道大家有没有做好充分的准备去迎接高考。众所周知,高考需要掌握的知识点较多,本期我就为大家准备了2021年高考知识点最后盘点以及高考数学必考知识点归纳,希望对大家有所帮助。
一、2021年高考知识点最后盘点
语数外是高考分数中占比最大的,其提升的空间较大,所以我下面为大家总结了最后冲刺阶段的学习和要掌握的知识点,供2021年考生参考。
1、数学
高考数学对基础知识的考察,既全面又突出重点,学生拥有扎实的数学基础是成功解题的关键,学生要针对数学高考强调的基础知识与基本技能一定要全面。并且系统地去复习高中数学的基础,正确理解基本概念,而且学生也要正确掌握定理、原理、公式形成记忆,学生一定要记住,要以不变应万变。
2、语文
如今,语文提醒发生了很大的变化,阅读理解的比重大幅增加。一般说来,高考题型分阅读、作文、基础题。针对阅读首先要读题,带着问题再去泛读全文,再回文中定位。用最快的速度抓取文章中心,再围绕中心去答题,突出中心。作文重点是立意要准确无误,开头结尾要注意规范且文字突出重点,再就是一定注意构思准确,避免跑题。
3、英语
高考英语涉及的语法较多,但从命题趋势上来看,高考英语现在更重视学生们的阅读技能,主要包括把握作者的整体思路,探查作者的隐藏意思,根据文中的具体阐述背景推断陌生单词的能力,推测和理解文章表达的信息。纯语法的试题比例很少,高考的英语不再重视对英语基础语言的理解去考查,而是转向对语言运用能力的考查,“原汁原味”的试题素材越来越多,现代感比重增强,体裁也更是趋于多样化。
二、高考数学必考知识点归
数学是让不少学子头疼的问题,所以我为大家整理了高考必考知识点归纳,希望大家能够在最后的阶段查缺补漏。
高三数学知识点总结一
1、随机抽样: (抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取。
2、分层抽样: 分层抽样主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。共同点:每个个体被抽到
的概率都相等N/M。
3、整群抽样: 应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
4、系统抽样: 当总体中的个体数较多时,采用简单随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
高三数学知识点总结二
1.定义:用符号〉,=,〈号连接的式子叫不等式。
2.性质:
①不等式的两边都加上或减去同一个整式,不等号方向不变。
②不等式的两边都乘以或者除以一个正数,不等号方向不变。
③不等式的两边都乘以或除以同一个负数,不等号方向相反。
3.分类:
①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。
②一元一次不等式组:
a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
4.考点:
①解一元一次不等式(组)
②根据具体问题中的数量关系列不等式(组)并解决简单实际问题
③用数轴表示一元一次不等式(组)的解集
高三数学知识点总结三
1、圆柱体
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a-边长,S=6a2,V=a3
4、长方体
a-长,b-宽,c-高S=2(ab+ac+bc)V=abc
5、棱柱
S-底面积h-高V=Sh
6、棱锥
S-底面积h-高V=Sh/3
7、棱台
S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1-上底面积,S2-下底面积,S0-中截面积
h-高,V=h(S1+S2+4S0)/6
9、圆柱
r-底半径,h-高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)
11、直圆锥
r-底半径h-高V=πr^2h/3
12、圆台
r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3
13、球
r-半径d-直径V=4/3πr^3=πd^3/6
14、球缺
h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球台
r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6
16、圆环体
R-环体半径D-环体直径r-环体截面半径d-环体截面直径
V=2π2Rr2=π2Dd2/4
17、桶状体
D-桶腹直径d-桶底直径h-桶高
V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)
高三学生迎战高考数学,需要怎么样主动学习、多思多想呢?
数学是一门深奥的学科,想要学的好就必须一步一步,像建房子一样一层一层做牢。
高考数学想要复习好有三步
1.巩固基础,想要复习好,基础必须先打牢,基础会了之后,再去看一些数学问题时就得心应手,并且需要把数学那些公式啊,函数图像啊,深刻的印在自己的脑袋里面。
2.学重点,数学知识那么多,总不可能一点一点的都要把它们装进脑袋,那就没有效率了,所以很重要的一方面那就是学重点,多看一些教辅资料,做一点往年的高考真题,把重点找到然后去巩固它们,把这些重点都学懂了,那高考问题应该也不会太大了。
3.那就是写错题本了,把自己复习途中遇到的所有错题总结到一起,最后找到自己的不足,遗漏的地方,把它补上,这个复习就是完美的了。
高三数学一轮复习用什么样的模式效果最好呢?
高考数学要取得较高的得分,要注意对基础知识和主干知识深入理解,培养解决新颖题型的能力,要重视对数学思想方法的锻炼,要提高解答综合题型的能力。
一、对试卷进行系统分析
高三学生在寒假里需要统计考试时,粗心所占失分比例!粗心中又分两种:一种是手误,提醒自己每次考前都看清这种题,敲响警钟,第二种是概念、定义,定理,公式不熟练导致,高三学生需要回归课本加强记忆。看到了粗心被扣分的题,就要提醒自己增加考试的细心度。对知识盲点或没有掌握牢知识点的需要进行全面回顾!
二、进行综合训练
高三学生需要明确,高考数学是考的得分能力。做题的时候先把会的题全部做了,不要硬是按顺序做。做完后回来做那些空了的,五分钟有思路,就做,没思路,就算了。有计算的必须做对,细心细心再细心。寒假里,高三学生需要对没有掌握到的知识点进行专项练习,每道题做完要有收获,需要强化知识点,需要做到看到题就立刻有解题思路!数学的知识在练习中不断提高,不断完善。使之熟悉各个知识点及知识点间在联系,并且熟能生巧,在做题中速度会变快,节省时间。
三、主动学习,善于总结
高三学生完成数学作业,应该把每一天的作业当成巩固知识、训练技能的一次好机会。数学题是做不完的,我们做了就要有成效,做数学题的关键在于打好基础,勤于总结,寻找规律,举一反三。高三学生在练习的过程中,遇到问题要多想一下为什么,在问题解决之后再探求一些新的方法,学会从不同角度去思考问题,甚至改变条件或结论去发现新问题,需要通过总结形成自己的思维规律。
高三学生需要积极主动的学习,找到自己的薄弱环节,看看自己在哪个知识上老出错。对于薄弱环节,要巩固好基本知识,应该有一个全面总结:这个题目考察了几个知识点,易错点是什么,与以往做的题目有哪些类似点。及时反思,善于总结就可以为学好数学打下基础。
四、多思多想,提升能力
解题需要有一定的方法,但解题没有固定的方法。高三学生对待数学备考,应多方位思考,纵横联系,从不同的角度审视问题,以创新意识解决数学问题。在学习的过程中,学会怎么分析问题,处理信息,解决问题。数学学习,高三学生需要融合多方面的知识,运用多种数学概念、定理、公式、法则及多种运算来解决数学问题,深入思考,多方琢磨。高三学生善于查找缺陷与不足,从中多练,多思,在失败中不断完善和提高,相信高考才可以取得高分。
高考数学的学习,就需要通过大量的训练,总结做题的方法,并进行思考,找出各个题型的解题思路和答题规律。寒假的时间,高三学生需要所有的数学课本进行梳理,沿着主线把各个知识点串联起来,加深理解,打好基础。
高考数学第一轮复习的五点建议
学习数学需要通过复习来循序渐进地提高自己的数学能力,考生在数学首轮复习中,往往存在两个误区,一是只顾埋头做题而不注重反思,有些同学在做题时,只要结果对了就不再深思做题中使用的解题目方法和题目所体现出来的数学思想;二是只注重课堂听课效率,而不注重课后练习,这在文科生中显得尤为普遍,这往往会导致考生看到考题觉得自己会,可一做就错。
数学教育家傅种孙先生言:“几何之务不在知其然,而在知其所以然;不在知其然,而在知何由以知其所以然。”实际上也为数学的学习标明了三个递进的境界:一是知其然,二是知其所以然;三是知何由以知其所以然。数学首轮复习,不能满足于一,应该立足于二而求三。
高考复习有别于新知识的教学,它是在学生基本掌握了中学数学知识体系,具备了一定的解题经验的基础上的复课数学;也是在学生基本认识了各种数学基本方法、思维方法及数学思想的基础上的复课教学,其目的在于深化学生对基础知识的理解,完善学生的知识结构,在综合性强的练习中进一步形成基本技能,优化思维品质,使学生在多次的练习中充分运用数学思想方法,提高数学能力,高考复习是学生发展数学思想,熟练掌握数学方法理想的难得的教学过程。
实际上,高考这一年数学复习工作概括起来就三句话:澄清概念(思维细胞);归纳方法(何时用,用的要领);学会思考。为便于同学操作,在此向进入数学第一轮复习的同学提五项建议:
一、夯实基础,知识与能力并重
没有基础谈不上能力;复习要真正地回到重视基础的轨道上来,这里的基础不是指针对考试机械重复的训练,而是指要搞清基本原理、基本方法,体验知识形成过程以及对知识本质意义的理解与感悟,同时,对基础知识进行全面回顾,并形成自己的知识体系。
著名数学家华罗庚先生说:“数学是一个原则,无数内容,一种方法,到处可用。”华罗庚先生还一再倡导读书要把书读得“由薄到厚”,再“由厚到薄”,如果说我们从小学到中学学习12年数学的过程是“由薄到厚”的过程,那么高考复习的过程应该是深刻领会数学的内容、意义和方法,认真梳理、归纳、探究、总结、提练,把握规律、灵活运用,把数学学习变成“由厚变薄”的过程,变成我们培养科学精神、掌握科学方法的最有效的工具,成为自己做高素质现代人的重要武器,那时,做高考数学题就会得心应手。
二、复习中要把注意力放在培养自己的思维能力上
培养自己独立解决问题的能力始终是数学复习的出发点与落脚点,要在体验知识的过程中,适时进行探究式、开放式题目的研究和学习,深刻领悟蕴涵在其中的数学思想方法,并加以自觉的应用,力求做到使自己的理性思维能力、分析问题和解决问题的能力有切实的提高。
学习好数学要抓住“四个三”:1、内容上要充分领悟三个方面:理论、方法、思维;2、解题上要抓好三个字:数、式、形;3、阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言);4、学习中要驾驭好三条线:知识(结构)是明线(要清晰),方法(能力)是暗线(要领悟、要提练),思维(训练)是主线(思维能力是数学诸能力的核心,创造性的思维能力是最强大的创新动力,是检验自己大脑潜能开发好坏的试金石。)
三、讲究复习策略
在第一轮复习中,要注意构建完整的知识网络,不要盲目地做题,不要急于攻难度大的“综合题、探究题”,复习要以中档题为主,选题要典型,要深刻理解概念,抓住问题的本质,抓住知识间的相互联系。高考题大多数都很常规,只不过问题的情景、设问的角度改变了一下,因此,建议考生在首轮复习中,不要盲目地自己找题,而应在老师的指导下,精做题。
数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的的,其中的关键在于对待题目的态度和处理解题的方式上。
要精选做题,做到少而精。只有解决高质量的、有代表性的题目才能达到事半功倍的效果,然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。
要分析题目。解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要,我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。
四、加强做题后的反思
学习数学必须要做题,做题一定要独立而精做,具备良好的反思能力,才谈得上题目的精做。做题前要把老师上课时复习的知识再回顾一下,对所学的知识结构要有一个完整的清楚的认识,不留下任何知识的盲点,对所涉及的解题方法要深刻领会、做题时,一定要全神贯注,保持最佳状态,注意解题格式规范,养成良好的学习习惯,以良好的心态进入高考。做题后,一定要认真反思,仔细分析,通过做几道相关的变式题来掌握一类题的解法,从中总结出一些解题技巧,更重要的是掌握解题的思维方式,内化为自己的能力,并总结出对问题的规律性认识和找出自己存在的问题,对做题中出现的问题,注意总结,及时解决,重点一定要放在培养自己的分析问题和解决问题的能力上。
注意分析探求解题思路时数学思想方法的运用。解题的过程就是在数学思想的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与结论间的差异的过程,也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思想方法分析解决问题的过程。
注意数学思想方法在解决典型问题中的运用。如解题中求二面角大小最常用的方法之一就是:根据已知条件,在二面角内寻找或作出过一个面内一点到另一个面上的垂线,过这点再作二面角的棱的垂线,然后连结二垂足,这样平面角即为所得的直角三角形的一锐角。这个通法就是在化立体问题为平面问题的转化思想的指导下求得的,其中三垂线定理在构图中的运用,也是分析、联想等数学思维方法运用之所得。
调整思路,克服思维障碍时,注意数学方法的运用。通过认真观察,以产生新的联想;分类讨论,使条件确切、结论易求;化一般为特殊、化抽象为具体,使问题简化等都值得我们一试,分析、归纳、类比等数学思维方法;数形结合、分类讨论、转化等数学思想是走出思维困境的武器和指南。
用数学思想指导知识、方法的灵活运用,进行一题多解的练习,培养思维的发散性、灵活性、敏捷性;对习题灵活变通、引申推广,培养思维的深刻性,抽象性;组织引导对解法的简捷性的反思评估,不断优化思维品质,培养思维的严谨性、批判性,对同一数学问题的多角度的审视引发的不同联想,是一题多解的思维本源,丰富的合理的联想,是对知识的深刻理解,及类比、转化、数形结合、函数与议程等数学思想运用的必然。数学数学方法、数学思想的自觉运用往往使我们运算简捷、推理机敏,是提高数学能力的必由之路。
解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会,对于一道完成的题目,有以下几个方面需要总结:
1. 在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。
2. 在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。
3. 能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。
五、高考主干知识八大块
1、函数;2、数列;3、平面向量;4、不等式(解与证);5、解析几何;6、立体几何;7、概率、统计;8、导数及应用。
要做到块块清楚,不足之处如何弥补有招法,并能自觉建立起知识之间的有机联系,函数是其中最核心的主干知识,自然是高考考查的重点,也是数学首轮复习的重点。函数内容历来是高考命题的重点,试题中占有比重最大,在数列、不等式、解析几何等其他试题中,如能自觉应用函数思想方法来解题也往往能收到良好的效果。因此,掌握函数的基础概念,函数的图像与性质的相互联系与相互转化;掌握函数与方程、函数与不等式、函数与导数、函数与数列等知识的交汇与综合是数学首轮复习的重中之重。