您现在的位置是: 首页 > 教育新闻 教育新闻
高考几何数学题_高考几何题及答案文科
tamoadmin 2024-07-14 人已围观
简介1.那年的高考题有底面ABCD为直角梯形,的立体几何题?2.立体几何题目,急求第二问的文科解法3.急!!一道文科高考的几何数学题。4.山东高考文科数学的答案5.高二数学题(文科)立体几何6.关于平面几何证明的高中文科数学题1)设O1是上底面对角线交点,连AO1,由于O1C1=AO,且O1C1//AO所以 AOC1O1是平行四边形,从而C1O//AO1,又AO1?平面AB1D1,所以 C1O//平面
1.那年的高考题有底面ABCD为直角梯形,的立体几何题?
2.立体几何题目,急求第二问的文科解法
3.急!!一道文科高考的几何数学题。
4.山东高考文科数学的答案
5.高二数学题(文科)立体几何
6.关于平面几何证明的高中文科数学题
1)设O1是上底面对角线交点,连AO1,由于O1C1=AO,且O1C1//AO
所以 AOC1O1是平行四边形,从而C1O//AO1,又AO1?平面AB1D1,所以 C1O//平面AB1D1.
(2)因为CC1⊥平面A1B1C1D1,所以CC1⊥B1D1,又A1C1⊥B1D1,
所以B1D1⊥平面A1CC1,所以 B1D1⊥A1C,同理可证,AB1⊥A1C,从而 A1C⊥平面AB1D1.
(3)由于B1D1⊥平面A1ACC1,所以平面AB1D1⊥平面A1ACC1,从而O在平面AB1D1的射影在AO1上,所以,∠O1AO就是直线AC与平面AB1D1所成角。
所以 tan∠O1AO=OO1/AO=√2
那年的高考题有底面ABCD为直角梯形,的立体几何题?
数 学(文科)
第Ⅰ卷(选择题 共50分)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合 与 ,则( )
A. B. C. D.
2.函数 在 处有极值,则 的值为( ).
A. B. C. D.
3. 若 ,则下列结论正确的是( )
A. B. C. D.
4.下列三个不等式中,恒成立的个数有( )
① ; ② ;
③ .
A.3 B.2 C.1 D.0
5. 我校航模小组在一个棱长为6米的正方体房间试飞一种新型模型飞机,为保证模型飞机安全,模型飞机(外形不计)在飞行过程中要始终保持与天花板、地面和四周墙壁的距离均大于1米,则模型飞机“安全飞行”的概率为( )
A. B. C. D.
6. 已知某几何体的三视图如右图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )
A. B.
C. D.
7.若满足条件AB= ,C= 的三角形 有两个,则边长BC的取值范围是( )
A. B. C. D.
8.把函数 的图象按向量 平移后得到函数 的图象,则函数 的最大值为( )
A. 0 B. 1 C. D. -1
9.函数 的零点个数为( )
A.2 B.3 C.4 D.5
10.下列命题中
①命题“若 ,则x = 1”的逆否命题为“若x ≠ 1,则 ”;
②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是
③若 为命题,则 均为命题 ;
④对命题 : 使得 ,则 均有 .
其中正确命题的个数是( )
A.2 B.3 C.4 D.5
第Ⅱ卷(非选择题 共100分)
二.填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上.
11.设等差数列 的前 项和为 ,若 ,则 = .
12.设 为实数,若复数 ,则 = .
13. 已知实数x,y满足 且 的最大值是 .
14.已知 , ①设方程 的 个根是 ,则 ;
②设方程 的 个根 是 、 ,则 ;
③设方程 的 个根是 、 、 ,则 ;
④设方程 的 个根是 、 、 、 ,则 ;
由以上结论,推测出一般的结论: 设方程 的 个根是 、 、 、 ,
则 .
15.(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(几何证明选做题) 如图, 的弦ED,CB
的延长线交于点A。若BD AE,AB=4, BC=2,
AD=3,则CE= ;
(B)(极坐标系与参数方程选做题)已知抛物线C1的参数方程为x=8t2y=8t(t为参数),圆C2的极坐标方程为ρ=r(r>0),若斜率为1的直线经过抛物线C1的焦点,且与圆C2相切,则r=_ __;
(C)(不等式选做题)已知 ,若关于 的方程 有实根,则 的取值范围是 .
三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.
16.(本题满分12分)已知函数
(I)求函数 的最小值和最小正周期;
(II)设 的内角 的对边分别为 ,且 , ,求 的值.
17.(本题满分12分)在等比数列 中, ,公比 ,且 ,又 是 与 的等比中项.
(Ⅰ)求数列 的通项公式;
(Ⅱ)设 ,求数列 的前 项和 .
18.(本题满分12分)已知四棱柱 中, 底面 , , , .
(Ⅰ)求证: ;
(Ⅱ)求四面体 的体积.
19.(本题满分12分)某市在每年的春
节后,市都会发动公务员参与到植
树活动中去.林管部门在植树前,为保证
树苗的质量,都会在植树前对树苗进行
检测.现从甲乙两种树苗中各抽测了10株
树苗的高度,量出的高度如下(单位:厘米)
甲:
乙:
(Ⅰ)根据抽测结果,完成答题卷中的茎叶图,
并写出甲、乙两种树苗的高度的中位数;
(Ⅱ)设抽测的10株甲种树苗高度平均值为 ,将这10株树苗的高度依次输入按程序框图进行的运算,问输出的 大小为多少?并说明 的统计学意义.
20.(本题满分13分)已知函数 ,
(Ⅰ)当 时,求 的极大值;
(Ⅱ)当 时,讨论 在区间 上的单调性.
21.(本题满分14分)已知两点 (-2,0), (2,0), 动点P在y轴上的射影为H,若 、 分别是公比为2的等比数列的第三、四项.
(Ⅰ)求动点P的轨迹方程C;
(Ⅱ)已知过点N的直线 交曲线C于x轴下方两个不同的点A、B,设AB的中点为R,若过R与定点 的直线交 轴于点D( ,0),求 的取值范围.
立体几何题目,急求第二问的文科解法
2001年文科高考数学题,
第三题 第(18)小题 ,题目如下
如图,在底面是直角梯形的四棱锥S-ABCD中,<ABC=<BAD=90度,SA底面垂直ABCD,SA=AB=BC=1,AD=1/2
(1)求四棱锥S-ABCD的体积(2)求于SC底面ABCD所成角的正切值
急!!一道文科高考的几何数学题。
(2)、连接BN,过A′点做A′D⊥MN于D点,交BN于E点
∵二面角A′-MN-C为直二面角
∴面A′MN⊥面CMN
又面A′MN ∩ 面CMN = MN
∴A′D⊥面CMN
∴A′D⊥CN
又由题意知A′N⊥面BB′C′C
所以A′D在面BB′C′C上的射影在直接BN上
∴BN⊥CN
又BB′C′C为长方形,N为B′C′的中点
∴BC = 2BB′
设BB′=a,则AA′=BB′=a,BC=2BB′=2a
在Rt△ABC中,∠BAC=90°,AB=AC,BC=2a
∴AB=AC=√2a
∴λ=AB/AA′=√2a/a=√2
即若当二面角A′-MN-C为直二面角时,λ=√2
个人看法,有疑问,可咨询,如果计算有误,请谅解,希望对楼主有帮助。。。
山东高考文科数学的答案
过c1作面acb、线bc、ac的垂线,交点分别为o,d,e,连接od、oe、oc,可知oe垂直于ac,od垂直于bc,又因为角acb=90°,所以四边形oecd为矩形。
角acc1为60°,则ce=1/2cc1=0.5,同理cd等于二分之根号二
在直角三角形ocd中,由勾股定理得oc的平方等于四分之三,在直角三角形coc1中oc1等于根号下cc1的平方减去oc1的平方,就是1/2
高二数学题(文科)立体几何
试题与答案
数学试题(文科)
第Ⅰ卷 选择题(共50分)
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共10小题,每小题5分,共50分)
1.已知集合 , ,则 =( A )
A. B.
C. D.
2.若复数 ( , 为虚数单位位)是纯虚数,则实数 的值为( )
A.6 B.-2 C.4 D.-6
3.已知 ,则“ ”是“ ”的 ( B )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知点P(x,y)在不等式组 表示的平面区域上运动,
则z=x-y的取值范围是( )
A.[-2,-1] B.[-1,2] C.[-2,1] D.[1,2]
5.双曲线 的离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为( )
A. B. C. D.
一年级 二年级 三年级
女生 373
男生 377 370
6.某校共有学生2000名,各年级男、女生人数如表所示.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的
学生人数为( )
A.24 B.18 C.16 D.12
7.平面向量 =( )
A.1 B.2 C.3 D.
8.在等差数列 中,已知 ,那么 的值为( )
A.-30 B.15 C.-60 D.-15
9.设 、 为两个不同的平面,l、m为两条不同的直线,且l ,m ,有如下的两个命题:①若 ‖ ,则l‖m;②若l⊥m,则 ⊥ .那么( )
A.①是真命题,②是命题 B.①是命题,②是真命题
C.①②都是真命题 D.①②都是命题
10.已知一个几何体的三视图如所示,则该几何体的体积为( )
A.6 B.5.5
C.5 D.4.5
第Ⅱ卷 非选择题(共100分)
二、填空题:本大题共7小题,考生作答5小题,每小题5分,满分25分.
(一)必做题(11~14题)
11.已知 ,且 是第二象限的角,
则 ___________.
12.执行右边的程序框图,若 =12, 则输
出的 = ;
13.函数 若
则 的值为: ;
14.圆 上的点到直线 的最大距离与最小距离之差是: _____________.
(二)选做题(15~17题,考生只能从中选做一题)
15.(选修4—4坐标系与参数方程)曲线 与曲线 的位置关系是: (填“相交”、 “相切”或“相离”) ;
16.(选修4—5 不等式选讲)不等式 的解集是: ;
17.(选修4—1 几何证明选讲)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .
三、解答题:解答应写出文字说明,证明过程或演算步骤(本答题共6小题,共75分)
18.(本小题12分)
已知向量 , ,设 .
(1).求 的值;
(2).当 时,求函数 的值域。
19.(本小题12分)
已知函数 .
(1)若 从集合 中任取一个元素, 从集合 中任取一个元素,
求方程 有两个不相等实根的概率;
(2)若 从区间 中任取一个数, 从区间 中任取一个数,求方程 没有实根的概率.
20.(本小题12分)
在平面直角坐标系xoy中,已知四点 A(2,0), B(-2,0), C(0,-2),D(-2,-2),把坐标系平面沿y轴折为直二面角.
(1)求证:BC⊥AD;
(2)求三棱锥C—AOD的体积.
21.(本小题12分)
已知数列 的前n项和为 , 且满足 ,
(1) 求 的值;
(2) 求证:数列 是等比数列;
(3) 若 , 求数列 的前n项和 .
22、(本小题13分)
已知函数 在点 处的切线方程为 .
(1)求 的值;
(2)求函数 的单调区间;
(3)求函数 的值域.
23.(本小题14分)已知椭圆 两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足 =1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.
文科数学参考答案与评分标准
一、选择题:
A卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案 A D A B D C B A D C
B卷选择题答案
题号 1 2 3 4 5 6 7 8 9 10
答案
二、填空题:
(一)必做题
11. ; 12.4.; 13.1或 ; 14. .
(二)选做题
15.相交;16. ;17. .
三、解答题:
18.解: =
=
= ……………………………………(4分)
(1)
= …………………………(8分)
(2)当 时, ,
∴ ………………………(12分)
19.解:(1)a取集合{0,1,2,3}中任一元素,b取集合{0,1,2}中任一元素
∴a、b的取值情况有(0,0),(0,1)(0,2)(1,0)(1,1)(1,2)(2,0),
(2,1),(2,2),(3,0)(3,1)(3,2)其中第一个数表示a的取值,第二个数表示b的取值,基本总数为12.
设“方程 有两个不相等的实根”为A,
当 时方程 有两个不相等实根的充要条件为
当 时, 的取值有(1,0)(2,0)(2,1)(3,0)(3,1)(3,2)
即A包含的基本数为6.
∴方程 有两个不相等的实根的概率
……………………………………………………(6分)
(2)∵a从区间〔0,2〕中任取一个数,b从区间〔0,3〕中任取一个数
则试验的全部结果构成区域
这是一个矩形区域,其面积
设“方程 没有实根”为B
则B构成的区域为
即图中阴影部分的梯形,其面积
由几何概型的概率计算公式可得方程 没有实根的概率
………………………………………………(12分)
20.解法一:(1)∵BOCD为正方形,
∴BC⊥OD, ∠AOB为二面角B-CO-A的平面角
∴AO⊥BO ∵AO⊥CO 且BO∩CO=O
∴AO⊥平面BCO 又∵
∴AO⊥BC 且DO∩AO=O ∴BC⊥平面ADO
∴BC⊥AD …………(6分)
(2) …………………………(12分)
21.解:(1)因为 ,令 , 解得 ……1分
再分别令 ,解得 ……………………………3分
(2)因为 ,
所以 ,
两个代数式相减得到 ……………………………5分
所以 ,
又因为 ,所以 构成首项为2, 公比为2的等比数列…7分
(3)因为 构成首项为2, 公比为2的等比数列
所以 ,所以 ……………………………8分
因为 ,所以
所以
令
因此 ……………………………11分
所以 ………………………12分
22.解:(1)
∵ 在点 处的切线方程为 .
∴ …………………………(5)
(2)由(1)知: ,
x
2
+ 0 — 0 +
极大
极小
∴ 的单调递增区间是: 和
的单调递减区间是: ………………………………(9)
(3)由(2)知:当x= -1时, 取最小值
当x= 2时, 取最大值
且当 时, ;又当x<0时, ,
所以 的值域为 ………………………………………(13)
23.解:(1) , ,设
则 ,
又 , ,∴ ,即所求 ……(5分)
(2)设 : 联立
得:
∵ ,∴ ,
则
同理 , ∴ ……(10分)
(3)设 : ,联立
,得: ,∴
∴|AB|=
而
∴S=
当且仅当m=±2时等号成立。…………………………………(14分)
关于平面几何证明的高中文科数学题
(1)∵AC=BC=2
∴AB=2倍的根号2又∵AP=BP=AB
∴BP=2倍的根号2 ∵PC=BC=2 可推出PC2+BC2=BP2=8 由勾股定理可得△PCB是等腰直角三角形 即∠PCB=90°,即PC⊥BC 又PC⊥AC,AC、BC是平面ABC内的相交直线 ∴PC⊥平面ABC ∴PC垂直平面ABC内的任何直线;AB∈平面ABC ∴PC⊥AB(2)过C点做△PCA的垂线交AP于D,如图?
由已知条件可得D点是AP的中点,由已知条件可得△ABP是等边三角形,连接BD,则可得BD是△ABP的一条中垂线,即BD⊥AP
∴∠BDC就是二面角B-AP-C的一个平面角
∵AC=PC=2,△ACP是等腰直角三角形
∴CD=AD=根号2
∵AB=AP=BP=2倍的根号2,BD⊥AP
∴BD=根号6,又∵BC=2
三角形的三条边都知道了,用正弦或者余弦就可以得到二面角的大小
根据圆内接四边形性质,角BDE+角BCE=180度;
又角BDE+角ADE=180度(直线)
所以角BCE=角ADE
所以三角形ADE 与三角形ABC相似
所以AD:AC=AE:AB