您现在的位置是: 首页 > 教育新闻 教育新闻

2017年高考数学全国卷三,2017高考模拟卷三数学

tamoadmin 2024-05-16 人已围观

简介2018届新野县高三数学文上第一次月考模拟试题题目  一、选择题(本题共16道小题,每小题5分,共80分)  1.已知集合A={x|x2﹣5x﹣6=0},则A?N*=(  )  A. {6} B.{﹣1} C.{1} D.?  2.已知集合 , ,则 ( )  A. B. C. D.  3.已知f(x)= ,若f(x)的值域为(﹣?,3),则实数a的取值范围是(  )

2017年高考数学全国卷三,2017高考模拟卷三数学

2018届新野县高三数学文上第一次月考模拟试题题目

 一、选择题(本题共16道小题,每小题5分,共80分)

 1.已知集合A={x|x2﹣5x﹣6=0},则A?N*=(  )

 A. {6} B.{﹣1} C.{1} D.?

 2.已知集合 , ,则 ( )

 A. B. C. D.

 3.已知f(x)= ,若f(x)的值域为(﹣?,3),则实数a的取值范围是(  )

 A.(﹣?,﹣2)?(2,+?) B.

 C. D.[2,+?)

 4. 函数 的定义域是( )

 A. B.

 C. D.

 5.定义在 上的函数 是它的导函数,且恒有 成立,则( )

 A. B.

 C. D.

 6.已知集合A={x|y= },A?B=?,则集合B不可能是(  )

 A.{x|4x<2x+1} B.{(x,y)|y=x﹣1}

 C. D.{y|y=log2(﹣x2+2x+1)}

 7.已知函数f(x)= x3﹣ ax2+x在区间( ,3)上既有极大值又有极小值,则实数a的取值范

 围是(  )

 A.(2,+?) B.[2,+?) C.(2, ) D.(2, )

 8.已知二次函数f(x)=ax2+bx+c的导数f?(x),f?(0)>0,且f(x)的值域为[0,+?),

 则 的最小值为(  )

 A. 2 B. C.3 D.

 9.p是真?是?p?q为假?的(  )

 A.充分不必要条件 B.必要不充分条件

 C.充要条件 D.既不充分也不必要条件

 10.设函数f(x)= ,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),

 则x1+x2+x3的取值范围是(  )

 A.( ] B.( ) C.( ] D.( )

 11. 对于三次函数f(x)=ax3+bx2+cx+d(a?0),给出定义:设f?(x)是函数y=f(x)的导数,

 f?(x)是f?(x)的导数,若方程f?(x)=0有实数解x0,则称点(x0,f(x0))为函数

 y=f(x)的?拐点?.经过探究发现:任何一个三次函数都有?拐点?;任何一个三次函数

 都有对称中心,且?拐点?就是对称中心.设函数g(x)= ,则g( )

 +g( )+?+g( )=(  )

 A.2016 B.2015 C.4030 D.1008

 12.已知函数f(x)=x2ex,当x?[﹣1,1]时,不等式f(x)

 A.[ ,+?) B.( ,+?) C.[e,+?) D.(e,+?)

 13.已知条件p:a<0,条件q:a2>a,则¬p是¬q的(  )

 A.必要不充分条件 B.充分不必要条件

 C.充要条件 D.既不充分也不必要条件

 14.下列函数中,既是偶函数又存在零点的是(  )

 A.y=lnx B.y=x2+1 C.y=sinx D.y=cosx

 15.若函数f(x)=kax﹣a﹣x,(a>0,a?1)在(﹣?,+?)上既是奇函数,又是增函数,则

 g(x)=loga(x+k)的是(  )

 A. B.

 C. D.

 16. 已知函数 的导数为 ,且满足关系式 ,则 的值等于( )

 A. B. C.2 D.

 第Ⅱ卷(非选择题 共70分)

 二、填空题(本大题共4小题,每小题5分,共20分.)

 17. 已知p:2x2﹣7x+3?0,q:|x﹣a|?1,若p是q的必要不充分条件,则实数a的取值范围是 .

 18. 定义在R上的函数f(x)满足f(﹣x)=﹣f(x),f(x﹣2)=f(x+2),且x?=(﹣2,0)

 时, f(x)=2x+ ,则f(2017)= .

 19. 函数f(x)=lnx+ax存在与直线2x﹣y=0平行的.切线,则实数a的取值范围是 .

 20. 下列说法,其中正确命题的序号为 .

 ①若函数 在 处有极大值,则实数c=2或6;

 ②对于R上可导的任意函数 ,若满足 ,则必有

 ③若函数 在 上有最大值,则实数a的取值范围为(-1,4);

 ④已知函数 是定义在R上的奇函数, 则不等式

 的解集是(-1,0) .

 三、解答题

 21.(10分)已知A={x|﹣2?x?5},B={x|m+1?x?2m﹣1},B?A,求m的取值范围.

 22.(12分)已知命题p:指数函数f(x)=(2a﹣6)x在R上单调递减,命题q:关于x的方程

 x2﹣3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.

 23.(14分)某公司生产的商品A每件售价为5元时,年销售10万件,

 (I) 据市场调查,若价格每提高一元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多提高多少元?

 (II)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件 元,公司拟投入 万元作为技改费用,投入 万元作为宣传费用。试问:技术革新后生产的该商品销售量m至少应达到多少万件时,才可能使技术革新后的该商品销售收入等于原销售收入与总投入之和?

 24.(14分)已知函数f(x)= 在点(e,f(e))处切线与直线e2x﹣y+e=0垂直.

 (注:e为自然对数的底数)

 (1)求a的值;

 (2)若函数f(x)在区间(m,m+1)上存在极值,求实数m的取值范围;

2018届新野县高三数学文上第一次月考模拟试题答案

 一、选择题

 1.A 2.C 3.C 4.D 5.A 6.D 7.C 8.A 9.B

 10.D 11.B 12.D 13.A 14.D 15.C 16.B

 二、填空题

 17.[ ,2] 18.﹣1 19. (-?,2) 20.④

 三、解答题

 21. 解:当m+1>2m﹣1,即m<2时,B=?,满足B?A,即m<2;

 当m+1=2m﹣1,即m=2时,B=3,满足B?A,即m=2;

 当m+1<2m﹣1,即m>2时,由B?A,得 即2<m≤3; p=""> </m≤3;>

 综上所述:m的取值范围为m?3.

 22. 解:若p真,则f(x)=(2a﹣6)x在R上单调递减,

 ?0<2a﹣6<1,且2a﹣6?1

 ?3<a< p=""> </a<>

 若q真,令f(x)=x2﹣3ax+2a2+1,则应满足

  a> ,

 又由题意应有p真q假或p假q真.

 ①若p真q假,则 ,a无解.

 ②若p假q真,则

 ?

 23.

 24.解:(1)∵f(x)= ,? ,

 由题意得 ,?﹣ =﹣ ,解得a=1.

 (2)由(1)得 ,(x>0),

 当x?(0,1)时,f?(x)>0,f(x)为增函数,

 当x?(1,+?)时,f?(x)<0,f(x)为减函数,

 ?当x=1时,f(x)取得极大值f(1),

 ∵函数f(x)在区间(m,m+1)上存在极值,

 ?m<1<m+1,解得0<m<1, p=""> </m+1,解得0<m<1,>

 ?实数m的取值范围是(0,1).

6月7日,2017高考拉开帷幕,第一天考查语文和数学两门科目。

2017年是“新高考”第一年。那么,今年的高考试题命制的总体思路为何,是否突出了高考的育人功能和建设核心价值观的使命,是否做到了强化关键能力和学科素养的考查、强调高考的选拔功能和教学引导作用,是否做到了着力提高命题质量,突出高考的公平性和科学性?

科学实施命题设计,落实立德树人

教育部考试中心相关负责人指出:“2017高考语文的命题重点,是以提高语用水平、塑造思维品质的关键能力标准,以提升审美境界、涵育人文精神的学科素养标准,以加强社会主义理想信念的核心价值标准,推动立德树人教育任务的实现。”

“2017年高考语文把立德树人贯穿于命题工作全过程,突出高考的思想性和育人功能,彰显语文科在高考科目体系中所独具的‘以文化人、以文育人’的优势功能。”中国教育在线总编辑陈志文分析。记者采访中了解到,全国卷3道写作试题的命制均突出了高考的思想性和育人功能。

全国Ⅰ卷作文“中国关键词”,引导考生用两三个关键词来呈现他们所认识的中国,帮助外国青年读懂中国。专家分析,“试题意在引导考生正确认识中国特色,认清世界和中国的发展大势,向外国青年‘讲好中国故事’。写作要求将‘呈现你所认识的中国’作为明确指令,鼓励考生理性思辨,畅所欲言。”还有专家指出,北京卷作文“共和国,我为你拍照”,引导考生将个人命运与共和国发展紧密结合。

5万名上海考生,是上海实施全新高考改革方案的第一批考生。对于上海的作文题,上海交通大学人文学院中文系主任张中良教授认为,“预测”这个题目考生可以从个人写到社会,不会千篇一律、大同小异:“比如大到可以写行业、写地域等的预测问题。例如在大的视角看,线上电商如何冲击实体店等;又如自己家乡、所在城市,如何预测其发展之路。”

今年的语文命题还为考生发挥批判性思维提供了空间。“比如由关键词‘大熊猫’延伸到动物乃至生态保护的迫切,借‘空气污染’论述对创新、协调、绿色、开放、共享发展理念的呼唤。考生可以直面发展中的问题,正视前进中的矛盾。”有专家分析。

聚焦优秀传统文化,彰显文化自信

“突出中华优秀传统文化的考查重点、全面彰显文化自信,不仅是语文科的应有之义,更是优势和职责所在。”教育部考试中心相关负责人说。

据介绍,今年语文命题材料选取着重于展示传统文化中的优秀品德情操。全国卷名篇默写中,庄子《逍遥游》、荀子《劝学》、曹操《观沧海》等分别呈现出自我超越、自省好学、乐观进取的优良品质。文言阅读中,浙江卷引用《论语》中孔子与子贡、颜渊的对话,引导考生品评古人好学勤勉等品质。

今年语文命题还在材料主题规划方面力求让传统照进现实。如全国Ⅱ卷论述类文本阅读“青花瓷兴起”,青花瓷崛起是大航海时代技术创新与全球文明交融的硕果,题目引导考生了解古代丝绸之路的重大意义,进而对当今的“一带一路”倡议有更深了解。

数学命题在展示传统文化方面也着力很多。“2017年数学试卷通过多种渠道渗透数学文化,有的通过数学史展示数学文化的民族性与世界性;有的通过向考生揭示知识产生的背景、形成的过程,体现数学既是创造的、发现的,也是不断发展的;有的通过对数学思维方法的总结、提炼,呈现数学的思想性。”有专家分析说。比如全国Ⅱ卷第3题考查等比数列,试题从我国古代数学名著《算法统宗》引入,然后通过诗歌提出数学问题,阐明试题的数学史背景。全国Ⅰ卷第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题。浙江卷第11题以我国古代数学家刘徽创立的割圆术为背景,设计在圆内计算正六边形的面积问题,使考生深刻理解到中华民族优秀传统文化。

考查关键能力和学科素养,注重应用能力

“2017年数学科高考以考生现实生活的问题为背景设置试题,要求考生应用数学原理和数学工具解决实际问题。体现了数学在解决实际问题中的作用,符合高考改革中加强应用性、实践性的特点。”教育部考试中心相关负责人说。

该负责人介绍,2017年数学试卷采用大题、小题结合的方式,全面、深入考查学生的应用能力。全国Ⅱ卷第19题以水产品养殖方法为背景,设计了根据样本数据分析比较新、旧养殖方法产量的问题。试题的第一问设计为根据直方图估计某事件的概率,第二问设计为根据整理的数据进行随机变量间独立性的检验,第三问设计为根据直方图,估计总体中位数,灵活地考查了概率与统计知识。天津卷文科第16题以电视连续剧播放为背景,考查线性规划知识解决实际问题的能力,以及抽象概括和运算求解能力。

今年,在上海和浙江进行的综合改革试点中,首次命制不分文理的数学试卷。“两省市的试卷更强调各类考生必须具备的数学核心素养。无论是常规题还是创新题,是数学问题还是应用问题,都设计出自然合理的情境、控制情境的抽象程度,力图使考生能正确理解题意。”有专家分析。

“在试卷文字总量保持基本稳定的前提下,今年高考语文将文学类与实用类文本均设为阅读必做题,对思维方式不同、素养构成有别的考生形成了全方位考查。而信息筛选、逻辑分析、审美鉴赏、语言运用等能力的全面覆盖,将有利于语文能力素养更为全面的考生脱颖而出。”深圳中学特级教师王木森分析。

在张家口市第一中学特级教师尤立增看来,把论述类、实用类和文学类文本均设为必考内容,其实是“四两拨千斤”,“将会扭转语文教学一线因应试而产生的偏差,促使语文基础教育加强对学生实用文本阅读能力与文学艺术素养的全面重视。”

展现高考改革成果,引导一线教学

2017高考语文试卷的客观题总的分值相应增加了14分。“通过调整,考生的书写总量下降了,但阅读总量尤其是思维含量并未降低,试卷的整体难度与往年大体持平。选择题主要考查信息筛选、综合分析、概括理解、文本鉴赏、语言积累运用等方面的能力,目标更明确,重点更清晰。尤其是多项选择题的增加,可以进一步拉开区分度,更好地发挥考试的选拔功能。”教育部考试中心相关负责人说。

同时,2017高考语文还加强了语言运用方面的考查。题型上增加了表达得体和逻辑推断等测试。据该负责人分析,这样一方面使得命题基础性、区分度更为突出,另一方面也将引领一线语文教学,促进语文学科建设。比如考查逻辑推断,就向中小学语文教育释放了清晰的信号:学校应该凸显语言学习及运用,强化对学生思维能力的培养,帮助学生将课内的“学得”与课外的“习得”学用并举。

上海的“新高考”也为原先的教学秩序提供新的参考。参加“新高考”的考生,一进入高中就被要求学会主动选择,如何发挥自己的学科优势和特长,再对照报考高校提前发布的相关专业的招考科目要求,从政治、历史、地理、物理、化学、生物6门科目中选出参加等级考的3门科目,还要参加大量的研究型学习和科创活动、社会实践。

“针对上海学生在PISA(国际学生评估项目)测试中反映出的应用类文体阅读写作能力不强等问题,这两年,我们在语文教学中增加了科技类、图表式说明文的教学;针对在网络语言环境中长大的这一代孩子的实际,也加强了对于使用得体、规范的汉语表达训练。”华东师范大学第二附属中学高三语文教师骆蔚说。

“今年语文的阅读量增加了8%左右,鼓励学生不仅要精读、细读,还要大量阅读。因为阅读量上不去,思维能力就上不去。这样的命题思路会对一线教学产生很好的导向作用。”北京大学中文系教授温儒敏说。

文章标签: # 函数 # 高考 # lt