您现在的位置是: 首页 > 教育新闻 教育新闻

14年高考数学答案,14年高考真题数学

tamoadmin 2024-07-27 人已围观

简介1.广西成人高考专升本高等数学一考试真题及参考答案?2.2014年安徽高考数学平均分3.2014年江苏高考数学难不难4.求近几年数学高考试卷(带答案,最好是湖北省的)5.2004年数学高考卷浙江理科11题怎么写6.福建省近几年高考卷 数学呵呵,楼上的是全国一卷的,而且只有数学卷,我帮楼主找找吧,但是现在网速慢,打不开网页,破电信!!!等晚上我找到了整理好发给楼主啊,收到了请纳哦... PS:本是二

1.广西成人高考专升本高等数学一考试真题及参考答案?

2.2014年安徽高考数学平均分

3.2014年江苏高考数学难不难

4.求近几年数学高考试卷(带答案,最好是湖北省的)

5.2004年数学高考卷浙江理科11题怎么写

6.福建省近几年高考卷 数学

14年高考数学答案,14年高考真题数学

呵呵,楼上的是全国一卷的,而且只有数学卷,我帮楼主找找吧,但是现在网速慢,打不开网页,破电信!!!

等晚上我找到了整理好发给楼主啊,收到了请纳哦...

PS:本是二楼的哈,楼主,现在我已经发给你了,来自7544.......全国二卷语数外理综.

做人要厚道,满意请纳!!!!!!!!!!

广西成人高考专升本高等数学一考试真题及参考答案?

我是14级文科考生。还可以,当时平均分没到及格线,主要是选择题,填空比较难。开头开的不大好,大题前几题都是可以拿差不多的分的。最后大题前两小问可以拿分。因为是葛军出的卷子==安徽考生被弄怕了==13年的更难==。所以说15年的卷子简单是前两届学长学姐们的命换来的。。。。

2014年安徽高考数学平均分

成考快速报名和免费咨询:s://.87dh/xl/ 广西成考网分享:广西成人高考专升本高等数学一考试真题及参考答案

一、选择题:1~10小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.

1.

A.2/3 B.1 C.3/2 D.3

答案:C

2.设函数y=2x+sinx,则y/=

A.1-cosx B.1+cosx C.2-cosx D.2+cosx

答案:D

3.设函数y=ex-2,则dy=

A.ex-3dx B.ex-2dx C.ex-1dx D.exdx

答案:B

4.设函数y=(2+x)3,则y/=

A.(2+x)2 B.3(2+x)2 C.(2+x)4 D.3(2+x)4

答案:B

5.设函数y=3x+1,则y/=

A.0 B.1 C.2 D.3

答案:A

6.

A.ex B.ex-1 C.ex-1 D.ex+1

答案:A

7.

A.2x2+C B.x2+C C.1/2x2+C D.x+C

答案:C

8.

A.1/2 B.1 C.2 D.3

答案:C

9.设函数z=3x2y,则αz/αy=

A.6y B.6xy C.3x D.3X2

答案:D

10.

A.0 B.1 C.2 D.+∞

答案:B

二、填空题:11~20小题,每小题4分,共40分.把答案填在题中横线上.

11.

答案:e2

12.设函数y=x3,则y/=

答案:3x2

13.设函数y=(x-3)4,则dy=

答案:4(x-3)3dx

14.设函数y=sin(x-2),则y"=

答案:-sin(x-2)

15.

答案:1/2ln|x|+C

16.

答案:0

17.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为

答案:3x+2y-2z=0

18.设函数x=3x+y2,则dz=

答案:3dx+2ydy

19.微分方程y/=3x2的通解为y=

答案:x3+C

20.

答案:2

三、解答题:21-28题,共70分。解答应写出推理、演算步骤。

21.(本题满分8分)

22.(本题满分8分)

23.(本题满分8分)

求曲线y=x3-3x+5的拐点。

解:y/=3x2-3,y"=6x

令y"=0,解得x=0

当x<0时,y"0时,y">0

当x=0是,y=5

因此,点(0,5)为所给曲线的拐点

24.(本题满分8分)

25.(本题满分8分)

26.(本题满分10分)

设D为曲线y=x2与直线y=x所围成的有界平面图形,求D饶x轴旋转一周所得旋转体的体积V。

以上就是关于广西成人高考专升本高等数学一考试真题及参考答案的相关内容,考生如果想获取更多关于广西成人高考信息,如成考答疑、报考指南、成绩查询、历年真题、学习方法、广西成考专升本试题题库等,敬请关注广西成考网。

成考有疑问、不知道如何总结成考考点内容、不清楚成考报名当地政策,点击底部咨询,免费领取复习资料:s://.87dh/xl/

2014年江苏高考数学难不难

2014年安徽高考数学平均分在55分左右,原因如下:

2014年,葛军连续第二年参与安徽省高考理科数学命题工作,虽然较13年而言试卷难度略微容易,但是从考生的反映来看,题目难度还是偏大。

2014年不少的考生最后三大题为空白,这也是导致2014年的安徽理科分数线与2013年的理科分数线基本持平的重要原因。

2021年安徽高考

相较于语文,数学的难度有些出乎考生们的意料。"我觉得这次的数学挺简单的,有些拉不开差距。"下午考试结束后,合肥168中考点外一位考生说。

在随机访的几位考生中,大家都表示今年高考数学难度要低于模考,做起来比较顺手。访中,有数学老师表示,往年数学是拉开差距的一个重要部分,2021年区分度没有那么高,这对于中等偏上考生是比较有利的,对于尖子生们来说,则要追求试卷的准确率才能拉开与其他考生的差距了。

求近几年数学高考试卷(带答案,最好是湖北省的)

总体来说江苏2014年高考后面压轴2大题较难。另外我是2010年高考江苏考生,那年就难,但是我最后还是考了137+33=170分,相比今年我大学马上毕业了。作为大学生来说,今年的数学卷,最后两题,我也花了75分钟,结果第20题最后一问还是错的。

2004年数学高考卷浙江理科11题怎么写

高中数学合集百度网盘下载

链接:s://pan.baidu/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、、各大名师网校合集。

福建省近几年高考卷 数学

2004年普通高等学校招生全国统一考试

数 学(浙江卷)参考答案

一.选择题: 本大题共12小题,每小题5分,共60分.

1. D 2.A 3.B 4.C 5.A 6.A 7.C 8.B 9.D 10.D 11.B 12.D

二.填空题:本大题共4小题,每小题4分,满分16分.

13. 14. 14 --25 15. 5 16.

三.解答题:本大题共6小题,满分74分.

17. (本题满分12分)

解: (Ⅰ)

=

=

=

=

(Ⅱ) ∵

∴ ,

又∵

当且仅当 b=c= 时,bc= ,故bc的最大值是 .

(18) (满分12分)

解: (Ⅰ)由题意可得,随机变量 的取值是2、3、4、6、7、10.

随机变量 的概率分布列如下

2 3 4 6 7 10

P 0.09 0.24 0.16 0.18 0.24 0.09

随机变量 的数学期望

=2×0.09+3×0.24+4×0.16+6×0.18+7×0.24+10×0.09=5.2.

(19) (满分12分)

方法一

解: (Ⅰ)记AC与BD的交点为O,连接OE,

∵O、M分别是AC、EF的中点,ACEF是矩形,

∴四边形AOEM是平行四边形,

∴AM∥OE.

∵ 平面BDE, 平面BDE,

∴AM∥平面BDE.

(Ⅱ)在平面AFD中过A作AS⊥DF于S,连结BS,

∵AB⊥AF, AB⊥AD,

∴AB⊥平面ADF,

∴AS是BS在平面ADF上的射影,

由三垂线定理得BS⊥DF.

∴∠BSA是二面角A—DF—B的平面角.

在RtΔASB中,

∴二面角A—DF—B的大小为60?.

(Ⅲ)设CP=t(0≤t≤2),作PQ⊥AB于Q,则PQ∥AD,

∵PQ⊥AB,PQ⊥AF, ,

∴PQ⊥平面ABF, 平面ABF,

∴PQ⊥QF.

在RtΔPQF中,∠FPQ=60?,

PF=2PQ.

∵ΔPAQ为等腰直角三角形,

又∵ΔPAF为直角三角形,

∴ ,

所以t=1或t=3(舍去)

即点P是AC的中点.

方法二

(Ⅰ)建立如图所示的空间直角坐标系.

设 ,连接NE,

则点N、E的坐标分别是( 、(0,0,1),

∴ ,

又点A、M的坐标分别是

( )、(

∴ 且NE与AM不共线,

∴NE∥AM.

又∵ 平面BDE, 平面BDE,

∴AM∥平面BDF.

(Ⅱ)∵AF⊥AB,AB⊥AD,AF

∴AB⊥平面ADF.

∴ 为平面DAF的法向量.

∵ ? =0,

∴ ? =0得

, ,

∴ 为平面BDF的法向量.

∴ 与 的夹角是60?.

即所求二面角A—DF—B的大小是60?.

(Ⅲ)设P(t,t,0)(0≤t≤ )得

又∵PF和CD所成的角是60?.

解得 或 (舍去),

即点P是AC的中点.

(20)(满分12分)

解:(Ⅰ)因为

所以切线 的斜率为

故切线 的方程为 即 .

(Ⅱ)令y=0得x=t+1,

又令x=0得

所以S(t)=

=

从而

∵当 (0,1)时, >0,

当 (1,+∞)时, <0,

所以S(t)的最大值为S(1)=

(21) (满分12分)

解: (Ⅰ)由条件得直线AP的方程

因为点M到直线AP的距离为1,

即 .

解得 +1≤m≤3或--1≤m≤1-- .

∴m的取值范围是

(Ⅱ)可设双曲线方程为 由

得 .

又因为M是ΔAPQ的内心,M到AP的距离为1,所以∠MAP=45?,直线AM是∠PAQ的角平分线,且M到AQ、PQ的距离均为1.因此, (不妨设P在第一象限)

直线PQ方程为 .

直线AP的方程y=x-1,

∴解得P的坐标是(2+ ,1+ ),将P点坐标代入 得,

所以所求双曲线方程为

(22)(满分14分)

解:(Ⅰ)因为 ,

所以 ,又由题意可知

=

=

∴ 为常数列.

(Ⅱ)将等式 两边除以2,得

又∵

(Ⅲ)∵

又∵

∴ 是公比为 的等比数列.

2010年福建省考试说明样卷

(理科数学)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第21(1)、(2)、(3)题为选考题,请考生根据要求选答;其它题为必考题.本卷满分150分,考试时间120分钟.

第Ⅰ卷 (选择题 共50分)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.

1.复数 等于

A. B. C.-1+i D.-1-i

2.已知全集U=R,集合 ,则 等于

A. B.

C. D.

3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是

A. B.

C. D.

4.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 > ”的是

A. = B. =

C. = D.

5.右图是计算函数 的值的程序框图,在①、②、③处应分别填入的是

A. , , B. , ,

C. , , D. , ,

6.设 , 是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 的一个充分而不必要条件是

A. 且 B. 且

C. 且 D. 且

7.已知等比数列 中, ,则其前3项的和 的取值范围是

A. B.

C. D.

8.已知 是实数,则函数 的图象不可能是

9.已知实数 满足 如果目标函数 的最小值为 ,则实数 等于

A.7 B.5 C.4 D.3

10.定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系;在平面斜坐标系 中,若 (其中 、 分别是斜坐标系 轴、 轴正方向上的单位向量, , R, 为坐标系原点),则有序数对 称为点 的斜坐标.在平面斜坐标系 中,若 =120°,点 的斜坐标为(1,2),则以点 为圆心,1为半径的圆在斜坐标系 中的方程是

A. B.

C. D.

二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置.

11.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是_______.

12.若 ,则a1+a2+a3+a4+a5=____.

13.由直线 ,x=2,曲线 及x轴所围图形的面积为 .

14.一人上班有甲、乙两条路可供选择,早上定时从家里出发,走甲路线有 的概率会迟到,走乙路线有 的概率会迟到;无论走哪一条路线,只要不迟到,下次就走同一条路线,否则就换另一条路线;设他第一天走甲路线,则第三天也走甲路线的概率为 .

15.已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:

x

0 2

3

y 2 0

据此,可推断椭圆C1的方程为 .

三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.把解答过程填写在答题卡的相应位置.

16.(本小题满分13分)

的三个内角 所对的边分别为 ,向量 =( , ), ,且 ⊥ .

(Ⅰ)求 的大小;

(Ⅱ)现给出下列四个条件:

① ;② ;③ ;④ .

试从中再选择两个条件以确定 ,求出你所确定的 的面积.

(注:只需选择一个方案答题,如果用多种方案答题,则按第一种方案给分)

17.(本小题满分13分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84

乙 92 95 80 75 83 80 90 85

(Ⅰ)用茎叶图表示这两组数据;

(Ⅱ)现要从中选派一人参加某数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;

(Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛考试进行预测,记这3次成绩中高于80分的次数为 ,求 的分布列及数学期望E .

18.(本小题满分13分)四棱锥P-ABCD的底面与四个侧面的形状和大小如图所示.

(Ⅰ)写出四棱锥P-ABCD中四对线面垂直关系(不要求证明);

(Ⅱ)在四棱锥P-ABCD中,若 为 的中点,求证: ‖平面PCD;

(Ⅲ)在四棱锥P-ABCD中,设面PAB与面PCD所成的角为 ,求 值.

19.(本小题满分13分) 以F1(0,-1),F2(0,1)为焦点的椭圆C过点P( ,1).

(Ⅰ)求椭圆C的方程; (Ⅱ)略.

20.(本小题满分14分)已知函数 .

(Ⅰ)求函数 的极值;(Ⅱ)略.

21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.

(1)(本小题满分7分)选修4-2:矩阵与变换(略).

(2)(本小题满分7分)选修4一4:坐标系与参数方程

在极坐标系中,设圆 上的点到直线 的距离为 ,求 的最大值.

(3)(本小题满分7分) 选修4—5:不等式选讲

已知 的最小值.

样卷参考答案

一、选择题:本题考查基础知识和基本运算,每小题5分,满分50分.

1.D 2.A 3.D 4.A 5.B 6.B 7.D 8.D 9.B 10.A

二、填空题:本题考查基础知识和基本运算,每小题4分,满分20分.

11.9. 12.31. 13.2 . 14. .15. .

三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.

16.解:(I)∵ ⊥ ,∴-cosBcosC+sinBsinC- =0,

即cosBcosC-sinBsinC=- ,∴cos(B+C)=- .∵A+B+C=180°,∴cos(B+C)=-cosA,

∴cosA= ,A=30°.

(Ⅱ)方案一:选择①③,可确定△ABC.∵A=30°,a=1,2c-( +1)b=0.

由余弦定理 ,整理得 =2,b= ,c= .

∴ .

方案二:选择①④,可确定△ABC.∵A=30°,a=1,B=45°,∴C=105°.

又sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°= .

由正弦定理得c= .∴ .

(注:若选择②③,可转化为选择①③解决;若选择②④,可转化为选择①④解决,此略.选择①②或选择③④不能确定三角形)

17. 解:(I)作出茎叶图如下:

(Ⅱ)派甲参赛比较合适,理由如下:

甲的成绩较稳定,派甲参赛比较合适.

注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分,如派乙参赛比较合适,理由如下:从统计的角度看,甲获得85以上(含85分)的概率 ,乙获得85分以上(含85分)的概率 . , 派乙参赛比较合适.

(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为A, 则 .

随机变量 的可能取值为0,1,2,3,且 服从 ,

所以变量 的分布列为 .

.(或 )

18.解法一:

(Ⅰ)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,

AD⊥平面PAB,BC⊥平面PAB,AB⊥平面PAD.

(Ⅱ)依题意AB,AD,AP两两垂直,分别以直线AB,AD,AP为x,y,z轴,

建立空间直角坐标系,如图.则 , , , .

∵E是PA中点,∴点E的坐标为 ,

, , .

设 是平面PCD的法向量.由 ,即

取 ,得 为平面PCD的一个法向量.

∵ ,∴ ,

∴ ‖平面PCD.又BE 平面PCD,∴BE‖平面PCD.

(Ⅲ)由(Ⅱ),平面PCD的一个法向量为 ,

又∵AD⊥平面PAB,∴平面PAB的一个法向量为 ,

∴ .

19.解: (Ⅰ)设椭圆方程为 (a>b>0),由已知c=1,

又2a= ,所以a= ,b2=a2-c2=1,椭圆C的方程是x2+ =1.

20.解:(Ⅰ) .

当 , ,函数 在 内是增函数,∴函数 没有极值.

当 时,令 ,得 .

当 变化时, 与 变化情况如下表:

+ 0 -

单调递增 极大值 单调递减

∴当 时, 取得极大值 .

综上,当 时, 没有极值;

当 时, 的极大值为 ,没有极小值.

21. (2)解:将极坐标方程 转化为普通方程:

可化为

在 上任取一点A ,则点A到直线的距离为

,它的最大值为4

文章标签: # 平面 # 数学 # 答案