您现在的位置是: 首页 > 教育新闻 教育新闻

2017高考辽宁数学试题_2017辽宁高考真题

tamoadmin 2024-06-22 人已围观

简介1.2017年高考数学全国卷1难吗2.如何评价2017年高考全国1卷数学题3.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?4.2017年高考数学必考等差数列公式2017年高考数学试卷具体特点紧扣考纲,核心突出数学文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,基本上各占22分,

1.2017年高考数学全国卷1难吗

2.如何评价2017年高考全国1卷数学题

3.2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?

4.2017年高考数学必考等差数列公式

2017高考辽宁数学试题_2017辽宁高考真题

2017年高考数学试卷具体特点

紧扣考纲,核心突出

数学文、理科试卷,分别取材于构成高中数学主体框架内容的函数与导数、立体几何、解析几何、概率与统计、三角函数和数列的试题,基本上各占22分,共占110分。数列考察等差等比数列、和项关系递推公式及求和;三角解答题以解三角形两类题型出现,加上三角恒等变换与图象性质两道选填题;立几考察三视图、空间几何体的计算及平行、垂直的,夹角、体积、表面积的计算,解几考察三种圆锥曲线与直线的综合问题;函数则考察零点、图像、导数、单调性与最值等问题,仍属压轴题。

立足实际,注重应用

命题强调数学的应用,既考察了数学知识与方法在学科内的应用,也考察了数学知识在解决实际问题中的应用。如文科的第2题解决的是作物产量的对比分析评估,文科和理科的第19题,考察的都是在实际生活生产流水线上,对于产品的质量监督与抽样分析调查的问题,从而体现数学与实际生活的密不可分的联系。

立足基础,常规考察

命题中涵盖了接近80%的基础题型,题目设置难度不大,但要求学生对课本知识的全面掌握。文、理23考察的是极坐标、参数方程、普通直角坐标方程的转化,以及曲线参数方程中在求解距离最值时候进行的三角换元,解题思路明确,计算量一般,所以整体难度也不大。题型基础,出题直击考点,简明扼要。让考生倍感亲切,从试题形式、分析思路到解题方法,均是学生日常训练中,经常训练的常规题型。对基础扎实的学生,审题轻松。

适度创新,选拔能力

命题追求稳中求新,适度考察将已有的知识与方法迁移到新情境中解决问题的能力。如理12以数列为载体综合考察推理论证能力、运算求解能力和创新意识;文4,理科2都以“太极八卦图”作为命题载体,考察的是概率的计算,同时注重对中国传统文化的宣传与理解;文6,16,理7,16以三视图和球为载体综合考察了学生的空间思维的能力。

2017年高考数学全国卷1难吗

试题与去年相比试卷命朴实,平易近人,试卷贴近考生,符合师生期望,整体中较为常规。

试题中不少题目让师生一见如故,平和亲切,重视考查学生的基本数学素养,全盘兼顾知识点、思想方法与能力的考查,关注数学的应用意识与创新意识,除了具有良好的选拔功能,对中学数学教学也具有很好的导向作用,主要表现在注重基础,重视数学素养,加强数学应用与数学思维能力的培养。

注重基础2017年全国高考文科数学Ⅰ卷对基础知识与基础技能的重全面,又突出重点,贴切教学实际,试卷中的每种题型均设置了数量较多的基础题,许多试题都是单一知识点或是最基础的知识交汇点上设置,如1、2、3、6、7、10、11、13、14、15占选择填空题的比例较高达到63﹪.

数学素养方面:

试卷的第12题以解析几何中的椭圆为背景考察了对椭圆的焦点在x,y坐标轴上进行的分类讨论思想,第21题的导数题求导后对a的正负进行的分类讨论思想。第2题以我国太极图中的阴阳鱼为原型,设计几何概型以及几何概率计算问题,贴近考生生活,通过本题的求解,使考生感受中华传统优秀文化的民族性与世界性,深刻地认识到中华民族优秀传统文化的博大精深和源远流长,激励他们创造出更加辉煌的成就。

试卷重视数学知识的应用:

背景来自于学生所能理解的生活现实与社会现实,如19题以生产零件为命题背景,将数学知识与实际问题相结合,考查考生的阅读理解能力以及应用数学知识解决实际问题的能力,体现了数学的应用价值与人文特色,其中知识难度并不复杂,主要在计算能力上的要求较高。对考生的阅读理解能力、数据处理计算能力,理性思维进行了全方面的考查。

综合性与创新性:

为了提高区分度,试卷在注重基础的同时,也充分考查学生的创新意识,试题稳中有变,如第12题,解析几何知识为依托,结合三角函数考查学生对知识点的细节分析能力,给中等学生提供了展示舞台。再如第16题,对学生的空间想象能力,计算能力,分析问题的能力都有较高的要求,对于基础比较好的同学有一定的优势。具有较好的区分度,体现了高考的选拔性。再如第21题,第一问主要考察学生的分类讨论思想,属于学生熟悉的题型,但是对导函数进行因式分解具有一定的难度,第二问比较容易入手,由第1问的讨论学生需要讨论求最小值,难点在于求解不等式,需要学生有较高综合分析能力以及一定的计算能力的要求,这也充分体现了综合性与创新性的特点.当然本题也给优秀学生提供了发挥的平台。

从今年的试卷总体情况来看,新课标卷贴近中学教学实际,注重思想与方法的考察,体现了数学的基础性,应用性和工具性的学科特色,善于应用知识之间的内在联系构建试卷的主体结构,命题更加科学。

如何评价2017年高考全国1卷数学题

难与不难都是相对而言的,对于平常学习扎实的就不会难,反之则相反;另,我也看了试卷,总体来说难度不大,但这毕竟是全国性的选拔型考试,要能够筛选出优劣,才能发挥原有的,而这基本是最后两道难度较大的题来实现的。

2017全国高考数学(理I)20题为了判断f(x)的第二个零点,取x=ln(3/a-1)如何想到?

2017年高考全国1卷数学题计算量有些大

数学的第19道题是一个概率统计题,此题有点难度,涉及的知识点比较生疏.

全国卷的数学题没有想象中那么难”“和平时训练的试题难度差不多”“感觉还好”……大多数考生反映数学没有出现怪题、偏题,难度和平时训练的相差不大。

“理科数学卷压轴题21题,这是一道导数题,此题的难度并不大。对许多考生来说,难度比预想的要容易一些。”

在理科数学试卷里,选择、填空的压轴题难度比平时训练的要简单一些,但是,一些应用题的计算量有些大,“有的考生称没有做完试卷。”

2017年高考数学必考等差数列公式

f'(x)=2ax+(2-a)-1/x

=(2ax^2+(2-a)x-1)/x

=(2x-1)(ax+1)/x

a>1

令f'(x)>=0

x<=-1/a或x>=1/2

定义域是x>0

∴x>=1/2

增区间是[1/2,+∞),减区间是(0,1/2]

当1/a>=1/2时

f(x)在区间[1/a,1]内的最大值

=f(1)

=a+2-a-0

=2不是ln3

∴1/a<1/2

a>2

f(x)在区间[1/a,1]内的最大值

=f(1/a)

=a*1/a^2+(2-a)/a-ln(1/a)

=1/a+2/a-1+lna

=3/a-1+lna

=ln3

∴a=3符合a>2

综上a=3

如果您认可我的回答,请点击“为满意答案”,祝学习进步!

 等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。以下是我为您整理的关于2017年高考数学必考等差数列公式的相关资料,希望对您有所帮助。

 高中数学知识点:等差数列公式

 等差数列公式an=a1+(n-1)d

 a1为首项,an为第n项的通项公式,d为公差

 前n项和公式为:Sn=na1+n(n-1)d/2

 Sn=(a1+an)n/2

 若m+n=p+q则:存在am+an=ap+aq

 若m+n=2p则:am+an=2ap

 以上n.m.p.q均为正整数

 解析:第n项的值an=首项+(项数-1)?公差

 前n项的和Sn=首项?n+项数(项数-1)公差/2

 公差d=(an-a1)?(n-1)

 项数=(末项-首项)?公差+1

 数列为奇数项时,前n项的和=中间项?项数

 数列为偶数项,求首尾项相加,用它的和除以2

 等差中项公式2an+1=an+an+2其中{an}是等差数列

 通项公式:公差?项数+首项-公差

 高中数学知识点:等差数列求和公式

 若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

 S=(a1+an)n?2

 即(首项+末项)?项数?2

 前n项和公式

 注意:n是正整数(相当于n个等差中项之和)

 等差数列前N项求和,实际就是梯形公式的妙用:

 上底为:a1首项,下底为a1+(n-1)d,高为n。

 即[a1+a1+(n-1)d]* n/2={a1n+n(n-1)d}/2。

 高中数学知识点:推理过程

 设首项为 , 末项为 , 项数为 , 公差为 , 前 项和为 , 则有:

 当d?0时,Sn是n的二次函数,(n,Sn)是二次函数 的图象上一群孤立的点。利用其几何意义可求前n项和Sn的最值。

 注意:公式一二三事实上是等价的,在公式一中不必要求公差等于一。

 求和推导

 证明:由题意得:

 Sn=a1+a2+a3+。。。+an①

 Sn=an+a(n-1)+a(n-2)+。。。+a1②

 ①+②得:

 2Sn=[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an](当n为偶数时)

 Sn={[a1+an]+[a2+a(n-1)]+[a3+a(n-2)]+...+[a1+an]}/2

 Sn=n(A1+An)/2 (a1,an,可以用a1+(n-1)d这种形式表示可以发现括号里面的数都是一个定值,即(A1+An)

 基本公式

 公式 Sn=(a1+an)n/2

 等差数列求和公式

 Sn=na1+n(n-1)d/2; (d为公差)

 Sn=An2+Bn; A=d/2,B=a1-(d/2)

 和为 Sn

 首项 a1

 末项 an

 公差d

 项数n

 表示方法

 等差数列基本公式:

 末项=首项+(项数-1)?公差

 项数=(末项-首项)?公差+1

 首项=末项-(项数-1)?公差

 和=(首项+末项)?项数?2

 差:首项+项数?(项数-1)?公差?2

 说明

 末项:最后一位数

 首项:第一位数

 项数:一共有几位数

 和:求一共数的总和

 本段通项公式

 首项=2?和?项数-末项

 末项=2?和?项数-首项

 末项=首项+(项数-1)?公差:a1+(n-1)d

 项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1

 公差= d=(an-a1)/n-1

 如:1+3+5+7+?99 公差就是3-1

 将a1推广到am,则为:

 d=(an-am)/n-m

 基本性质

 若 m、n、p、q?N

 ①若m+n=p+q,则am+an=ap+aq

 ②若m+n=2q,则am+an=2aq(等差中项)

文章标签: # an # a1 # 数学