您现在的位置是: 首页 > 教育新闻 教育新闻

高考文科数学辽宁答案分析_高考文科数学辽宁答案

tamoadmin 2024-07-23 人已围观

简介1.高考测试卷数学(文科)谁能给个答案吗?第15提是问甲乙两种棉花,5年中各平均单位产量,问比较稳定的...2.2009高考数学文科全国卷1答案3.2020年辽宁高考理科数学卷难度难不难,真题答案解析(下载)4.08高考全国卷1文科数学答案5.问个高考数学文科选择题6.2022全国新高考Ⅱ卷文科数学试题及答案解析 每一年的高考试题都具体复习参考的意义,有利于帮助考生了解高考出题方向,下面是我分享的

1.高考测试卷数学(文科)谁能给个答案吗?第15提是问甲乙两种棉花,5年中各平均单位产量,问比较稳定的...

2.2009高考数学文科全国卷1答案

3.2020年辽宁高考理科数学卷难度难不难,真题答案解析(下载)

4.08高考全国卷1文科数学答案

5.问个高考数学文科选择题

6.2022全国新高考Ⅱ卷文科数学试题及答案解析

高考文科数学辽宁答案分析_高考文科数学辽宁答案

每一年的高考试题都具体复习参考的意义,有利于帮助考生了解高考出题方向,下面是我分享的2022全国新高考Ⅰ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅰ卷文科数学试题及答案解析

2022全国新高考Ⅰ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅰ卷文科数学试题,供大家对照、估分、模拟使用。

高考数学必考知识点

圆的标准方程(_-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程_2+y2+D_+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2p_y2=-2p__2=2py_2=-2py

直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h

正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2

某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (_-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 _2+y2+D_+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2p_ y2=-2p_ _2=2py _2=-2py

直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h

正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h'

圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi_r2

圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

柱体体积公式 V=s_h 圆柱体 V=pi_r2h

高考数学答题窍门

1、审题要慢,答题要快

有些考生只知道一味求快,往往题意未清,便匆忙动笔,结果误入歧途,即所谓欲速则不达,看错一个字可能会遗憾终生,所以审题一定要慢,有了这个“慢”,才能形成完整的合理的解题策略,才有答题的“快”。

2、运算要准,胆子要大

高考没有足够的时间让你反复验算,更不容你一再地变换解题 方法 ,往往是拿到一个题目,凭感觉选定一种方法就动手做,这时除了你的每一步运算务求正确外,还要求把你当时的解法坚持到底,也许你选择的不是最好的方法,但如回头重来将会花费更多的时间,当然坚持到底并不意味着钻牛角尖,一旦发现自己走进死胡同,还是要立刻迷途知返。

3、先易后难,敢于放弃

能够增强信心,使思维趋向,对发挥水平极为有利;另一方面如果先做难题,可能会浪费好多时间,即使难关被攻克,却已没有时间去得那些易得的分数,所以关键时刻,敢于放弃,也是一种明智的选择。有些解答题第一问就很难,这时可以先放弃第一问,而直接使用第一问的结论解决第2问、第3问。

4、先熟后生,合理用时

面对熟悉的题目,自然象吃了定心丸,做起来得心应手,会使你获得好心情,并且可以在最短时间内完成,留下更多的时间来思考那些不熟悉的题目。有些题目需花很多时间却只得到很少分数,有些题目只要花很少时间却有很高的分值。所以应先把时间用在那些较易题或分值较高题目上,最大限度地提高时间的利用率。

2022全国新高考Ⅰ卷文科数学试题及答案解析相关 文章 :

★ 2022年高考乙卷数学真题试卷

★ 2022年新高考Ⅱ卷语文题目与答案解析

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022全国高考试卷分几类

★ 2022高考历年历史试卷分析(全国1卷)

★ 2022高考数学必考知识点归纳最新

★ 2022高考数学答题技巧

★ 2022年高考数学必考知识点总结最新

★ 2021新高考全国1卷数学真题及答案

★ 2022高考文综理综各题型分数值一览

高考测试卷数学(文科)谁能给个答案吗?第15提是问甲乙两种棉花,5年中各平均单位产量,问比较稳定的...

2020高考数学模拟试卷

链接: s://pan.baidu/s/1IZq7vV1Bru9mnt3BncRNpg

提取码: nq8m

若有问题欢迎追问

2009高考数学文科全国卷1答案

解:甲的平均数是 (68+72+70+69+71)/5=70∴甲的方差是 1/5(4+4+0+1+1)=2

乙的平均数是(69+71+68+68+69)/5=69∴乙的方差是 1/5(1+1+4+4+1)=2.2

有两者的平均数和方差可知甲的平均产量较高且产量较稳定

2020年辽宁高考理科数学卷难度难不难,真题答案解析(下载)

2009年普通高等学校招生全国统一考试

文科数学(必修+选修Ⅰ)

本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至2页,第卷3至4页.考试结束后,将本试卷和答题卡一并交回.

第Ⅰ卷

注意事项:

1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.

3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

参考公式:

如果 互斥,那么 球的表面积公式

如果 相互独立,那么 其中 表示球的半径

球的体积公式

如果 在一次试验中发生的概率是 ,那么

次独立重复试验中恰好发生 次的概率 其中 表示球的半径

一、选择题

(1) 的值为

(A) (B) (C) (D)

解析本小题考查诱导公式、特殊角的三角函数值,基础题。

解: ,故选择A。

(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集 ,则集合 中的元素共有

(A) 3个 (B) 4个 (C)5个 (D)6个

解析本小题考查集合的运算,基础题。(同理1)

解: , 故选A。也可用摩根定律:

(3)不等式 的解集为

(A) (B)

(C) (D)

解析本小题考查解含有绝对值的不等式,基础题。

解: ,

故选择D。

(4)已知tan =4,cot = ,则tan(a+ )=

(A) (B) (C) (D)

解析本小题考查同角三角函数间的关系、正切的和角公式,基础题。

解:由题 , ,故选择B。

(5)设双曲线 的渐近线与抛物线 相切,则该双曲线的离心率等于

(A) (B)2 (C) (D)

解析本小题考查双曲线的渐近线方程、直线与圆锥曲线的位置关系、双曲线的离心率,基础题。

解:由题双曲线 的一条渐近线方程为 ,代入抛物线方程整理得 ,因渐近线与抛物线相切,所以 ,即 ,故选择C。

(6)已知函数 的反函数为 ,则

(A)0 (B)1 (C)2 (D)4

解析本小题考查反函数,基础题。

解:由题令 得 ,即 ,又 ,所以 ,故选择C。

(7)甲组有5名男同学、3名女同学;乙组有6名男同学、2名女同学,若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有

(A)150种 (B)180种 (C)300种 (D)345种

解析本小题考查分类计算原理、分步计数原理、组合等问题,基础题。

解:由题共有 ,故选择D。

(8)设非零向量 、 、 满足 ,则

(A)150° (B)120° (C)60° (D)30°

解析本小题考查向量的几何运算、考查数形结合的思想,基础题。

解:由向量加法的平行四边形法则,知 、 可构成菱形的两条相邻边,且 、 为起点处的对角线长等于菱形的边长,故选择B。

(9)已知三棱柱 的侧棱与底面边长都相等, 在底面 上的射影为 的中点,则异面直线 与 所成的角的余弦值为

(A) (B) (C) (D)

解析本小题考查棱柱的性质、异面直线所成的角,基础题。(同理7)

解:设 的中点为D,连结 D,AD,易知 即为异面直线 与 所成的角,由三角余弦定理,易知 .故选D

(10) 如果函数 的图像关于点 中心对称,那么 的最小值为

(A) (B) (C) (D)

解析本小题考查三角函数的图象性质,基础题。

解: 函数 的图像关于点 中心对称

由此易得 .故选A

(11)已知二面角 为600 ,动点P、Q分别在面 内,P到 的距离为 ,Q到 的距离为 ,则P、Q两点之间距离的最小值为

解析本小题考查二面角、空间里的距离、最值问题,综合题。(同理10)

解:如图分别作

,连

当且仅当 ,即 重合时取最小值。故答案选C。

(12)已知椭圆 的右焦点为F,右准线 ,点 ,线段AF交C于点B。若 ,则 =

(A) (B) 2 (C) (D) 3

解析本小题考查椭圆的准线、向量的运用、椭圆的定义,基础题。

解:过点B作 于M,并设右准线 与x轴的交点为N,易知FN=1.由题意 ,故 .又由椭圆的第二定义,得 .故选A

2009年普通高等学校招生全国统一考试

文科数学(必修 选修Ⅰ)

第Ⅱ卷

注意事项:

1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.

2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.

3.本卷共10小题,共90分.

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.

(注意:在试题卷上作答无效)

(13) 的展开式中, 的系数与 的系数之和等于_____________.

解析本小题考查二项展开式通项、基础题。(同理13)

解: 因 所以有

(14)设等差数列 的前 项和为 。若 ,则 _______________.

解析本小题考查等差数列的性质、前 项和,基础题。(同理14)

解: 是等差数列,由 ,得

(15)已知 为球 的半径,过 的中点 且垂直于 的平面截球面得到圆 ,若圆 的面积为 ,则球 的表面积等于__________________.

解析本小题考查球的截面圆性质、球的表面积,基础题。

解:设球半径为 ,圆M的半径为 ,则 ,即 由题得 ,所以 。

(16)若直线 被两平行线 所截得的线段的长为 ,则 的倾斜角可以是

① ② ③ ④ ⑤

其中正确答案的序号是 .(写出所有正确答案的序号)

解析本小题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想。

解:两平行线间的距离为 ,由图知直线 与 的夹角为 , 的倾斜角为 ,所以直线 的倾斜角等于 或 。故填写①或⑤

三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

(17)(本小题满分10分)(注意:在试题卷上作答无效)

设等差数列{ }的前 项和为 ,公比是正数的等比数列{ }的前 项和为 ,已知 的通项公式.

解析本小题考查等差数列与等比数列的通项公式、前 项和,基础题。

解:设 的公差为 ,数列 的公比为 ,

由 得 ①

得 ②

由①②及 解得

故所求的通项公式为 。

(18)(本小题满分12分)(注意:在试用题卷上作答无效)

在 中,内角 的对边长分别为 .已知 ,且 ,求 .

解析本小题考查正弦定理、余弦定理。

解:由余弦定理得 ,

又 ,

即 ①

由正弦定理得

又由已知得

所以 ②

故由①②解得

(19)(本小题满分12分)(注决:在试题卷上作答无效)

如图,四棱锥 中,底面 为矩形, 底面 , , ,点 在侧棱 上,

(Ⅰ)证明: 是侧棱 的中点;

(Ⅱ)求二面角 的大小。(同理18)

解法一:

(I)

作 ‖ 交 于点E,则 ‖ , 平面SAD

连接AE,则四边形ABME为直角梯形

作 ,垂足为F,则AFME为矩形

设 ,则 ,

解得

即 ,从而

所以 为侧棱 的中点

(Ⅱ) ,又 ,所以 为等边三角形,

又由(Ⅰ)知M为SC中点

,故

取AM中点G,连结BG,取SA中点H,连结GH,则 ,由此知 为二面角 的平面角

连接 ,在 中,

所以

二面角 的大小为

解法二:

以D为坐标原点,射线DA为x轴正半轴,建立如图所示的直角坐标系D-xyz

设 ,则

(Ⅰ)设 ,则

解得 ,即

所以M为侧棱SC的中点

(II)

由 ,得AM的中点

所以

因此 等于二面角 的平面角

所以二面角 的大小为

(20)(本小题满分12分)(注意:在试题卷上作答无效)

甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。

(Ⅰ)求再赛2局结束这次比赛的概率;

(Ⅱ)求甲获得这次比赛胜利的概率。

解析本小题考查互斥有一个发生的概率、相互独立同时发生的概率,综合题。

解:记“第 局甲获胜”为 ,“第 局乙获胜”为 。

(Ⅰ)设“再赛2局结束这次比赛”为A,则

,由于各局比赛结果相互独立,故

(Ⅱ)记“甲获得这次比赛胜利”为B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而

,由于各局比赛结果相互独立,故

(21)(本小题满分12分)(注意:在试题卷上作答无效)

已知函数 .

(Ⅰ)讨论 的单调性;

(Ⅱ)设点P在曲线 上,若该曲线在点P处的切线 通过坐标原点,求 的方程

解析本小题考查导数的应用、函数的单调性,综合题。

解:(Ⅰ)

令 得 或 ;

令 得 或

因此, 在区间 和 为增函数;在区间 和 为减函数。

(Ⅱ)设点 ,由 过原点知, 的方程为 ,

因此 ,

即 ,

整理得 ,

解得 或

因此切线 的方程为 或

(22)(本小题满分12分)(注意:在试题卷上作答无效)

如图,已知抛物线 与圆 相交于A、B、C、D四个点。

(Ⅰ)求 的取值范围

(Ⅱ)当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标。

解:(Ⅰ)将抛物线 代入圆 的方程,消去 ,

整理得 ①

与 有四个交点的充要条件是:方程①有两个不相等的正根

由此得

解得

所以 的取值范围是

(II) 设四个交点的坐标分别为 、 、 、 。

则由(I)根据韦达定理有 ,

令 ,则 下面求 的最大值。

方法1:由三次均值有:

当且仅当 ,即 时取最大值。经检验此时 满足题意。

方法2:设四个交点的坐标分别为 、 、 、

则直线AC、BD的方程分别为

解得点P的坐标为 。

设 ,由 及(Ⅰ)得

由于四边形ABCD为等腰梯形,因而其面积

将 , 代入上式,并令 ,得

∴ ,

令 得 ,或 (舍去)

当 时, ;当 时 ;当 时,

故当且仅当 时, 有最大值,即四边形ABCD的面积最大,故所求的点P的坐标为

08高考全国卷1文科数学答案

辽宁数学文科试卷首次用全国卷(新课标2),与相比,数学试卷难度有所降低,大部分考生答起来都比较顺手,可谓给高考学子们的“征战之路”打了一剂强心针。

以往辽宁的数学自主命题卷,都是在选择最后一题与填空的最后一题设置难点,即12题与16题,对学生考试的心理心态、解题技巧、知识掌握程度都是不小的挑战。“全国卷”的命题风格则比较“平稳”,没有偏题怪题,难度系数相对较低,特别是与往年的全国卷相比,的文科理科数学试卷都更加简单,很可能会出现140多分的试卷或者满分试卷,的平均分也会比有所提高。

本溪市第一中学的数学老师介绍,高考数学卷,比较适合基础扎实的中等学生答卷。同时,尖子生也能发挥出应有的水平。但是拿到真正的高分也并非易事,因为的试题在命题形式上更加新颖灵活,有一定创新。

理科数学试卷中,解析题第17题是数形结合题,第18题是茎叶图,和往常略有变化。19题立体几何中的第一问也出现了较为冷门的作图题。平时考查立体几何的首问时,以证明平行、垂直或是求体积居多,作图题平时训练相对少,有些考生因为陌生而感到不适应。

总体来说,的语文与数学科目的总体风格都是着重考生对知识的综合掌握与运用能力,在维持试卷难度系数总体平衡的情况下,以更加灵活的命题考察学生的应变与知识运用能力。

问个高考数学文科选择题

在这里能够打高考数学试卷?这么多的数学符号!

如果你非得要在这里看,而拒绝网页和,那么我就提供给你!

绝密★启用前

2008年普通高等学校招生全国统一考试

文科数学(全国卷Ⅰ)(必修1+选修Ⅰ)

本试卷第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至9页。考试结束后,将本试卷和答题卡一并交回。

考生注意事项:

1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

3.本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:

如果A、B互斥,那么 球的表面积公式

P(A+B)=P(A)+P(B) S=4∏R2

如果A、B相互独立,那么 其中R表示球的半径

P(A+B)=P(A)+P(B) S=4∏R2

P(A?B)=P(A)?P(B) 球的体积公式

如果A在一次试验中发生的概率是P,那么 V= ∏R3

n次独立重复试验中A恰好发生k次的概率 其中R表示球的半径

Pn(k)=CknPk(1-p)n-k(k=0,1,2,…,n)

一、 选择题

(1)函数y= 的定义域为

(A){x|x≤1} (B) {x|x≥1}

(C){x|x≥1或x≤0} (D) {x|0≤x≤1}

(2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图像可能是

(3)(1+ ) 的展开式中x 的系数

(A)10 (B)5 (C) (D)1

(4)曲线y=x -2x+4在点(1,3)处的切线的倾斜角为

(A)30° (B)45° (C)60° (D)12°

(5)在△ABC中, =c, =b.若点D满足 =2 ,则 =

(A) (B) (C) (D)

(6)y=(sinx-cosx) -1是

(A)最小正周期为2π的偶像函数 (B)最小正周期为2π的奇函数

(C)最小正周期为π的偶函数 (D)最小正周期为π的奇函数

(7)已知等比数列{a }满足a +a =3,a + a =6,则a =

(A)64 (B)81 (C)128 (D)243

(8)若函数y=f(x)的图像与函数y=1n 的图像关于直线y=x对称,则f(x)=

(A) (B) (C) (D)

(9)为得到函数y=cos(x+ )的图像,只需将函数y=sinx的图像

(A)向左平移 个长度单位 (B)向右平移 个长度单位

(C)向左平移 个长度单位 (D)向右平移 个长度单位

(10)若直线 =1与图 有公共点,则

(A) (B) (C) (D)

(11)已知三棱柱ABC- 的侧棱与底面边长都相等, 在底面ABC内的射影为△ABC的中心,则A 与底面ABC所成角的正弦值等于

(A) (B) (C) (D)

(12)将1,2,3填入3×3的方格中,要求每行、第列都没有重复数字,下面是一种填法,则不同的填写方法共有

(A)6种 (B)12种 (C)24种 (D)48种

2008年普通高等学校招生全国统一考试

文科数学(必修+选修1)

第Ⅱ卷

注意事项:

1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。请认真核准条形码上的准考证号、姓名和科目。

2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。

3.本卷共10小题,共90分。

二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.

(注意:在试题卷上作答无效)

(13)若x,y满足约束条件 则z=2x-y的最大值为 .

(14)已知抛物线y=ax2-1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .

(15)在△ABC中,∠A=90°,tanB= .若以A、B为焦点的椭圆经过点C,则该椭圆的离心率e= .

(16)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A-BD-C为120°,则点A到△BCD所在平面的距离等于 .

三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

(17)(本小题满分10分)

(注意:在试题卷上作答无效)

设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.

(Ⅰ)求边长a;

(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.

(18)(本小题满分12分)

(注意:在试题卷上作答无效)

四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD= ,AB=AC.

(1) 证明:AD⊥CE;

(2) 设侧面ABC为等边三角形,求二面角C-AD-E的大小.

(19)(本小题满分12分)

(注意:在试题卷上作答无效)

在数列{ }中, =1,an+1=2an+2n.

(Ⅰ)设bn= .证明:数列{bn}是等差数列;

(Ⅱ)求数列{an}的前n项和Sn.

(20)(本小题满分12分)

(注意:在试题卷上作答无效)

已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:

方案甲:逐个化验,直到能确定患病动物为止.

方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.

求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.

(21)(本小题满分12分)

(注意:在试题卷上作答无效)

已知函数f(x)=x3+a x2+x+1,a R.

(Ⅰ)讨论函数f(x)的单调区间;

(Ⅱ)设函数f(x)在区间(- )内是减函数,求α的取值范围.

(22)(本小题满分12分)

(注意:在试题卷上作答无效)

双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知| |、| |、| |成等差数列,且 与 同向.

(Ⅰ)求双曲线的离心率;

(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.

2022全国新高考Ⅱ卷文科数学试题及答案解析

是复合函数

对数和二次函数(抛物线)

首先考虑到抛物线开口是向上的(X^2系数为正)

其次复合后的结果是在区间(2,正无穷)的增函数

所以对数也必须是增的,即a>1

抛物线的对称轴范围是X≤2

x≤-B/2A a≤2

丢了一个条件,x^2-2ax+3 >0 所以抛物线只能在X轴上方

判别式小于0 a<根号3

所以

1< a<根号3

7/4是当抛物线与X轴交于点(2,0)时,a的值,可是x^2-2ax+3只能大于0,不能等于0啊

在高考结束后,很多考生都会对答案,提前预估自己的分数,这样方便大家提前准备志愿填报。下面是我分享的2022全国新高考Ⅱ卷文科数学试题及答案解析,欢迎大家阅读。

2022全国新高考Ⅱ卷文科数学试题及答案解析

2022全国新高考Ⅱ卷文科数学试题还未出炉,待高考结束后,我会第一时间更新2022全国新高考Ⅱ卷文科数学试题,供大家对照、估分、模拟使用。

2022高考数学大题题型 总结

一、三角函数或数列

数列是高考必考的内容之一。高考对这个知识点的考查非常全面。每年都会有等差数列,等比数列的考题,而且经常以综合题出现,也就是说把数列知识和指数函数、对数函数和不等式等其他知识点综合起来。

近几年来,关于数列方面的考题题主要包含以下几个方面:

(1)数列基本知识考查,主要包括基本的等差数列和等比数列概念以及通项公式和求和公式。

(2)把数列知识和其他知识点相结合,主要包括数列知识和函数、方程、不等式、三角、几何等其他知识相结合。

(3)应用题中的数列问题,一般是以增长率问题出现。

二、立体几何

高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着多一点思考,少一点计算的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

三、统计与概率

1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机的发生存在着规律性和随机概率的意义。

6.了解等可能件的概率的意义,会用排列组合的基本公式计算一些等可能件的概率。

7.了解互斥、相互独立的意义,会用互斥的概率加法公式与相互独立的概率乘法公式计算一些的概率。

8.会计算在n次独立重复试验中恰好发生k次的概率.

四、解析几何(圆锥曲线)

高考解析几何剖析:

1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题;

2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。

有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作:

(1)、几何问题代数化。

(2)、用代数规则对代数化后的问题进行处理。

五、函数与导数

导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

1.导数的常规问题:

(1)刻画函数(比初等 方法 精确细微);

(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

2022高考解答题评分标准

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

解题策略:

(1)常见失分因素:

1.对题意缺乏正确的理解,应做到慢审题快做题;

2.公式记忆不牢,考前一定要熟悉公式、定理、性质等;

3.思维不严谨,不要忽视易错点;

4.解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

5.计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

6.轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

2022全国新高考Ⅱ卷文科数学试题及答案解析相关 文章 :

★ 2022高考全国甲卷数学试题及答案

★ 2022年全国乙卷高考语文真题试卷及答案解析(未公布)

★ 2022年浙江高考数学试卷

★ 2022新高考2卷语文试题及答案一览

★ 2022全国高考试卷分几类

★ 2022高考数学必考知识点归纳最新

★ 2022年高考数学必考知识点总结最新

★ 2022高考文综理综各题型分数值一览

★ 2022年新高考Ⅰ卷语文题目与答案参考

★ 2022新高考Ⅱ卷选择创造未来作文12篇

文章标签: # 高考 # 答案 # 解析