您现在的位置是: 首页 > 教育新闻 教育新闻

2017高考答案数学3卷-2017年高考数学全国三卷答案详细解析

tamoadmin 2024-09-27 人已围观

简介1.2017年高考数学全国卷1难吗2.2017年数学高考卷子的六道大题3.2017湖北高考文科数学试卷难不难2017年高考数学全国卷1难吗难与不难都是相对而言的,对于平常学习扎实的就不会难,反之则相反;另,我也看了试卷,总体来说难度不大,但这毕竟是全国性的选拔型考试,要能够筛选出优劣,才能发挥原有的,而这基本是最后两道难度较大的题来实现的。2017年数学高考卷子的六道大题 17.(12分) △A

1.2017年高考数学全国卷1难吗

2.2017年数学高考卷子的六道大题

3.2017湖北高考文科数学试卷难不难

2017年高考数学全国卷1难吗

2017高考答案数学3卷-2017年高考数学全国三卷答案详细解析

难与不难都是相对而言的,对于平常学习扎实的就不会难,反之则相反;另,我也看了试卷,总体来说难度不大,但这毕竟是全国性的选拔型考试,要能够筛选出优劣,才能发挥原有的,而这基本是最后两道难度较大的题来实现的。

2017年数学高考卷子的六道大题

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.

20.(12分)

已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae?^x+(a﹣2)e^x﹣x.

(1)?讨论的单调性;

(2)?若有两个零点,求a的取值范围.

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.

(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

2017湖北高考文科数学试卷难不难

1、目前湖北省2017年的高考准确报名人数还没有公布,预计会有所增加。2、湖北省2016年高考报名总人数为361478人。2017年预计报名人数36.5万人,有可能将是湖北省高考人数连续8年下降后的首次回升。

文章标签: # 高考 # 零件 # 数学